Тесты текущего контроля по дисциплине «Теория систем и системный анализ. Министерство образования российской федерации Тест по теории систем и системному анализу

Тесты по курсу «Теория систем и системный анализ»

1. Понятие системы, что оно собой представляет?

а) строгое формальное определение б) набор вербальных пояснений без строгих формализмов в) в каждой области исследований – свое понятие системы

2. По каким основаниям систему относят к классу сложных (СС)?

а) имеется строгое формальное определение б) приводится набор признаков сложности без строгих формализмов в) в каждой области исследований – свое понятие сложной системы

3. Что означает наличие признака СС «динамичность»?

а) параметры всех элементов изменяются во времени б) параметры некоторых элементов (не всех) изменяются во времени в) в системе отсутствуют элементы с изменяющимися параметрами

4. Что означает наличие признака СС «стохастичность»?

а) изменение параметров элементов происходит по вероятностным законам б) изменение механизмов взаимодействия между элементами происходит по вероятностным законам в) все изменения в системе детерминированы

5. Что означает наличие признака СС «декомпозиция»?

а) система является цельным образованием, не допускающим деление на подсистемы б) система допускает деление на подсистемы, не являющиеся сложными в) система допускает деление на подсистемы, являющиеся сложными

6. Что такое автономная система?

а) система, которая взаимодействует с окружающей средой б) система, которая взаимодействует с другими системами в) система, которая не взаимодействует ни с чем

7. Что такое физическое моделирование СС?

а) использование законов физики для описания СС

б) построение физического аналога СС для его исследования на базе проведения с ним натурных экспериментов

8. Что такое имитационное моделирование СС?

а) разработка уравнений для аналитического исследования параметров функционирования СС

б) разработка моделей СС для проведения с ними численных экспериментов на компьютере

9. Научная концепция теории систем возникла а) в Древней Греции б) в XVII-XVIII веках в) на рубеже XIX и XX веков г) в середине XX века

10. Элемент системы – это а) любая составляющая систему ее часть б) часть системы, не допускающая дальнейшее разделение на части

11. Набор атрибутов элемента системы представляет собой а) конечное число параметров элемента, описанных вербально б) вектор с компонентами, соответствующими атрибутам элемента из заданного набора атрибутов в) вектор с компонентами, соответствующими атрибутам элемента из заданного набора атрибутов, и с заданными шкалами измерения атрибутов

12. Множества значений атрибутов элемента СС могут быть а) только дискретными б) только непрерывными в) любыми

13. Размерность пространства состояний элемента системы зависит от а) шкал измерения атрибутов элемента б) числа атрибутов в) множеств значений атрибутов

14. Пространство состояний элемента системы, имеющего n атрибутов, может представлять собой а) множество любой размерности б) множество размерности меньше n

в) множество размерности n

15. Пространство состояний элемента системы может представлять собой а) только дискретное множество б) только непрерывное множество в) любое

16. Динамика элемента задается на а) всем его пространстве состояний б) на некотором заданном его подпространстве в) на непрерывном подмножестве пространства состояний

17. Особые состояния первого рода для элемента системы с n атрибутами могут задаваться конечным числом уравнений а) любым числом б) только числом менее n

в) только числом n

18. Особые состояния первого рода для элемента системы с n атрибутами лежат на поверхностях а) любой размерности б) размерности меньше n

в) размерности n

19. Особые состояния первого рода могут представлять собой а) только дискретные множества б) только непрерывные множества в) и те и другие

20. Моменты достижения особого состояния первого рода могут являться решениями уравнений а) только линейных б) только полиномиальных в) любых

21. Моменты достижения особых состояний первого рода для элемента системы с n атрибутами являются всегда решениями а) ровно n уравнений б) строго меньше n уравнений в) числа уравнений, не зависящих от n

22. Уравнения, описывающие особые состояния первого рода, не зависят от а) уравнений динамики б) времени в) атрибутов элемента

23. Моментом достижения особого состояния первого рода может быть а) любое решение соответствующих уравнений б) любое положительное решение в) не любое положительное решение

24. Особые состояния первого рода вводятся для формализации признака СС

а) динамичность б) стохастичность в) взаимодействие элементов

25. Скачкообразное изменение состояния элемента является следствием выхода на а) любое особое состояние первого рода б) только некоторые особые состояния первого рода в) некоторые другие подмножества пространства состояний элемента

3. ТЕСТЫ ПО УЧЕБНОМУ КУРСУ «СИСТЕМНЫЙ АНАЛИЗ»


1. Что подразумевается под составом элементов и связями между ними?

  1. Структура

  2. Целостность

  3. Элемент

  4. Эмерджентность
2. Что такое множество значений существенных характеристик системы в данный момент времени?

1. Поведение

2. Развитие

3. Состояние

4. Функционирование

3. Что такое термы?

1. Имена и члены предложений, определенные объекты исследования

2. Состав свойств системы

3. То, что связывает элементы в системе

4. Часть объекта, обладающая определенной самостоятельностью по отношению к всему объекту

4. Что из ниже перечисленного не входит в динамическое описание системы?

1. Процесс

2. Функторы

3. Система

5. Какой из принципов системного подхода предполагает необходимость исследования объекта как сложной совокупности составляющих его элементов?

1. Принцип цели

2. Принцип сложности

3. Принцип целостности

4. Принцип историзма

6. Что не является стадией жизненного цикла?

1. Функционирование

2. Создание

3. Развитие

4. Управление

7. Что такое системный анализ?

1. Методология решения проблем

2. Передача функций управления техническим средствам

3. Общая теория систем

4. Совокупность научных методов и практических приемов решения разнообразных проблем на основе системного подхода

8. Что является научной основой автоматизации?

1. Теория автоматов

2. Философия

3. Информатика

4. Общая теория систем

9. Что такое принципы?

1. Система знаний о некоторой области реального мира

2. Совокупность свойств системы

3. Установление соответствия между требованиями объективных законов и субъективной деятельностью

4. Состав элементов системы и связей между ними

10. Что такое система?

1. Целостная совокупность связанных элементов

2. Часть объекта, обладающая определенной самостоятельностью по отношению ко всему объекту

3. Множество объектов

4. Целостная совокупность связанных объектов

11. Какие виды связей бывают?

1. Существенные и несущественные

2. С управлением, без управления

3. Динамические, статические

4. Внутренние, внешние

12. Что такое абстрактные системы?

1. Системы с материальными элементами

2. Системы, состоящие из абстрактных элементов, не имеющих аналогов в реальном мире

3. Системы, состоящие из абстрактных элементов, и имеющие аналоги в реальном мире

4. Системы с биологическими элементами

13. На какие группы делятся системы по отношению к среде?

1. Естественные, искусственные

2. Статические, динамические

3. Открытые, замкнутые

4. Активные, пассивные

14. Какие основные этапы жизненного цикла системы Вы знаете?

1. Создание, рост зрелость, разрушение

2. Создание, функционирование, разрушение

3. Создание, отладка, функционирование, разрушение

4. Создание, отладка, функционирование

15. В рамках какой научной дисциплины решаются хорошо структуризованные проблемы?

1. Теория принятия решений

2. Системный анализ

3. Исследование операций

4. Теория игр

16. В рамках какой научной дисциплины решаются слабо структуризованные проблемы?

1. Теория принятия решений

2. Системный анализ

3. Исследование операций

4. Теория эффективности

17. Что является атрибутом проблемы?

1. Место и время возникновения проблемы

2. Сложность

3. Масштаб (размеры несоответствия)

4. Важность

18. В системном анализе система строится для:

1. Изучения состава входящих в нее элементов

2. Выявления проблемы

3. Определения взаимодействия с другими системами

4. Выделения подсистем системы

19. Технологическая схема системного исследования включает в себя:

1. Определение назначения системы, построение системы, анализ системы

2. Определение цели исследования, выявление проблемы, решение проблемы

3. Общий анализ исследуемой системы, выявление проблемы, определение направлений и путей решения проблемы

4. Выявление подсистем системы, выделение системы, анализ системы

20. Необходимыми компонентами системного анализа выступают:

1. Надежность, проблемность, решаемость, целостность

2. Целостность, качество, структурированность, модель

3. Цель, альтернативы, ресурсы, критерий, модель

4. Множество решений, ресурсы, модель

21. Какие из аксиом являются аксиомами теории управления?

1. Наличие наблюдаемости и управляемости объекта управления

2. Наличие свободы действий управляющего органа при выработке управляющих воздействий

3. Наличие свободы выбора управляющих воздействий из множества допустимых альтернатив и ресурсов для реализации принятых решений

4. Наличие цели и критерия эффективности управления

22. Система с управлением это:

1. Система принятия решений

2. Система, в которой реализуется управление

3. Кибернетическая система

4. Система выработки управляющих воздействий

23. Принципами управления являются:

1. Оперативное управление, регулирование, планирование

2. Иерархическое управление, текущее управление, формальное управление

3. Централизованное управление, децентрализованное управление, комбинированное управление

4. Планирование, оперативное управление, контроль

24. Функциями управления являются:

1. Учет, контроль, планирование, оперативное управление

2. Регулирование, прогнозирование, организация, оценка

3. Оценивание, прогнозирование, регулирование, формализация

4. Планирование, оперативное управление, организация, прогнозирование, учет, контроль

25. Принцип необходимого разнообразия У.Р.Эшби формулируется следующим образом:

1. Разнообразие объекта управления должно быть больше разнообразия управляющей системы

2. Разнообразие управляющей системы должно быть больше разнообразия объекта управления

3. Разнообразие управляющей системы должно быть не меньше разнообразия объекта управления

4. Разнообразие управляющей системы должно быть меньше разнообразия объекта управления

26. Задача анализа это:

1. Оптимизация системы

2. Оценка эффективности функционирования системы

3. Выявление структуры системы и принципов ее функционирования

4. Определение состава параметров и элементов системы

27. Задача синтеза это:

1. Определение структуры и параметров системы, исходя из заданных требований к показателям эффективности ее функционирования

2. Выявление принципов построения системы

3. Определение оптимальных значений параметров системы

4. Отыскание оптимальных принципов построения системы

28. Определить назначение шкал измерений

1. Сопоставление значений качественных и количественных характеристик объектов

2. Отождествление альтернатив

3. Измерение состояний объектов, процессов, явлений

4. Установление предпочтений характеристик сравниваемых объектов

29. Понятие «измерение» это:

1. Операция, которая данному наблюдаемому состоянию объекта, процесса, явления ставит в соответствие определенное обозначение

2. Совокупность действий по сбору исходных данных для оценивания объектов

3. Получение исходных данных об объекте с использованием прибора

4. Совокупность правил по сбору сведений о состояниях объектов

30. Сущность задачи парного сравнения состоит в:

1. Определение качественных характеристик сравниваемых объектов

2. Выявлении объекта с большей полезностью

3. Выявлении лучшего из двух сравниваемых объектов

4. Определение параметров сравниваемых объектов

31. Задача ранжирования заключается в:

1. Упорядочении объектов системы по убыванию (возрастанию) значения некоторого признака

2. Присвоении объектам системы ранга

3. Расстановке объектов системы по месту и времени их возникновения

4. Сортировке объектов системы по увеличению частости обращения к ним

32. Сущность задачи классификации заключается в:

1. Измерении параметров системы с помощью шкалы классификации

2. Отнесении заданного элемента системы к одному из подмножеств

3. Упорядочении объектов системы

4. Присвоении объектам системы определенного количественного признака

33. Сущность задачи численной оценки состоит в:

1. Сопоставлении системе одного или нескольких чисел

2. Измерении качественных характеристик объектов системы

3. Оценке существенных характеристик системы

4. Оптимизации параметров системы по выбранному критерию

34. Задача оценивания называется экспертизой, если она:

1 . Решается с помощью специалистов в исследуемой области

2. Решается с помощью консультантов

3. Решается с помощью лица, принимающего решение

4. Решается с помощью экспертов

35. Какие из перечисленных этапов являются этапами проведения экспертизы?

1. Упорядочение множества исходов операции по их предпочтительности

2. Определение полезности каждого исхода

3. Проверка полученных оценок на непротиворечивость путем сравнения оценок предпочтительности полезностей исходов

4. Устранение противоречий в оценках путем корректировки любого варианта упорядочения исходов, либо полезностей, либо того и другого вместе

36. Какие из перечисленных методов являются методами качественного оценивания систем?

1. Морфологические методы

2. Методы векторной оптимизации

3. Методы типа сценариев

4. Метод типа «дерева целей»

37. Какие из перечисленных правил необходимо соблюдать при использовании метода типа «мозговая атака»?

1. Не допускать критики любой идеи, не объявлять ее ложной и не прекращать обсуждение

2. Желательно не высказывать нетривиальные идеи

3. Обеспечить большую свободу мышления участников «мозгового штурма» и высказывания ими новых идей

4. Приветствовать любые идеи, даже если вначале они кажутся сомнительными или абсурдными

38. Метод типа сценариев позволяет:

1. Помочь исследователю составить представление о проблеме

2. Помочь исследователю решить проблему

3. Получить исследователю содержательные рассуждения о проблеме

4. Изучить исследователем проблему с использованием ЭВМ

39. Какие проблемы решаются с использованием методов экспертных оценок?

1. Проблемы, в отношении которых имеется достаточное обеспечение информацией

2. Проблемы, в отношении которых не имеется достаточное обеспечение информацией

3. Проблемы, в отношении которых знаний для уверенности и справедливости указанных гипотез не достаточно

4. Проблемы, в отношении которых знаний для уверенности и справедливости указанных гипотез достаточно

40. Какие из перечисленных этапов не являются этапами экспертизы?

1. Формирование цели и разработка процедуры экспертизы

2. Формирование группы экспертов и проведение опроса

3 . Сбор экспертами статистических данных

4. Анализ и обработка информации

41. Какие из перечисленных процедур не являются процедурами экспертных измерений?

1. Метод Черчмена-Акоффа

2. Метод фон Неймана-Моргенштерна

3. Метод Лагранжа

4. Метод Терстоуна

42. Какие из перечисленных процедур не являются процедурами Дельфи-метода?

1. Последовательность циклов «мозговой атаки»

2. Разработка индивидуальных опросов типа «сценарий»

3. Введение коэффициентов значимости мнений экспертов

4. Разработка программы последовательных индивидуальных опросов

43. Какие из перечисленных процедур не являются составляющими метода ^ PATTERN ?

1. Развертывание дерева целей с рядом критериев для каждого уровня

2. Определение экспертами весов критериев и коэффициентов значимости целей

3. Выявление связей между уровнями дерева целей

4. Определение коэффициента связи целей

44. В чем состоит сущность морфологических методов качественного оценивания систем?

1. Систематическое нахождение всех мыслимых вариантов решения проблемы комбинированием выделенных элементов или их признаков

2. Систематическое нахождение всех мыслимых вариантов реализации системы комбинированием выделенных элементов или их признаков

3. Систематическое нахождение наиболее существенных вариантов решения проблемы или реализации системы комбинированием выделенных элементов или их признаков

4. Систематическое нахождение всех мыслимых вариантов построения системы комбинированием выделенных элементов или их признаков

45. Что является предметом изучения теории принятия решений?

1. Закономерности построения сложных систем

2. Закономерности выделения и принятия решений

3. Закономерности переработки командной (управляющей) информации

4. Закономерности переработки информации состояния в командную информацию

46. Определить основную задачу исследования операций

1. Количественное и качественное обоснование решений

2. Качественное обоснование решений

3. Предварительное количественное обоснование решений

4. Предварительное качественное обоснование решений

47. Операция в теории принятия решений это:

1. Процесс выполнения последовательности действий в системе

2. Этап функционирования системы, ограниченный выполнением определенной цели

3. Совокупность правил построения системы

4. Этап функционирования системы

48. Неуправляемые характеристики системы это:

1. Часть характеристик, которые управляющий орган может менять с помощью объекта управления и должен учитывать при выборе решений

2. Часть характеристик, которые управляющий орган может менять с помощью объекта управления

3. Часть характеристик, которые может изменять объект управления

4. Часть характеристик, которые управляющий орган не может менять с помощью объекта управления, но должен учитывать при выборе решений

49. Управляемые характеристики системы это:

1. Характеристики системы, которые могут меняться управляющим органом

2. Характеристики системы, которые могут меняться объектом управления

3. Выбираемые характеристики

4. Задаваемые характеристики

50. Принятие решения это:

1. Акт задания значений управляемых характеристик

2. Определение состава управляемых и неуправляемых характеристик системы

3. Определение управляющим органом количества, качества, места и времени использования ресурсов для достижения цели

4. Акт задания значений неуправляемых характеристик

51. Допустимыми называются решения:

1. Для которых определены неуправляемые характеристики

2. Принимаемые управляющим органом

3. Удовлетворяющие наложенным ограничениям

4. Для которых определены управляемые характеристики

52. Оптимальным называется решение, которое:

1. Предпочтительнее других решений в области допустимых решений

2. Предпочтительнее других решений с точки зрения определенного признака

3. Является лучшим с точки зрения использования ресурсов системы

4. Имеет лучшие значения неуправляемых характеристик

53. Стратегией в теории принятия решений называется:

1. Совокупность неуправляемых характеристик, принимаемых для выполнения операции

2. Совокупность управляемых характеристик, принимаемых для выполнения операции

3. Совокупность решений, принимаемых для выполнения операции

4. Решение, принимаемое для выполнения операции

54. Сатисфакционный выбор в теории принятия решений это:

1. Выбор множества решений из области допустимых решений

2. Выбор любого решения из области допустимых решений

3. Выбор оптимального решения

4. Выбор допустимых решений

55. Исход операции это:

1. Результат достижения цели операции

2. Реализация того или иного решения

3. Ситуация, сложившаяся (прогнозируемая) на момент завершения операции

4. Заключительный этап реализации операции

56. Эффективность решения это:

1. Свойство решения соответствовать цели операции

2. Свойство системы соответствовать цели, поставленной перед системой

3. Свойство решения, заключающееся в достижении цели операции

4. Совокупность действий по выделению значений управляемых параметров

57. Какие из терминов являются синонимами термина «эффективность»?

1. Результативность

2. Оптимальность

3. Приспособленность

4. Действенность

58. Показатель эффективности решения это:

1. Параметр, значение которого удовлетворяет допустимому решению

2. Показатели исходов операции, на основе которых формируется критерий эффективности

3. Функции показателей исходов операции, на основе которых формируется критерий эффективности

4. Критерий эффективности решения

59. Полезность исхода операции это:

1. Числовая ограниченная функция

2. Действительное число, приписываемое исходу операции и характеризующее его предпочтительность по сравнению с другими показателями относительно цели

3. Показатель исхода операции, служащий для сравнения исходов

4. Действительное число, приписываемое исходу операции

60. Функция полезности это:

1. Линейная функция для определения вида критерия эффективности

2. Числовая ограниченная функция, определенная на множестве исходов

3. Пороговая функция для определения вида критерия эффективности

4. Ограниченная функция, применяемая для оценки эффективности решений

61. Процедура определения функции полезности включает следующие этапы:

1. Выявление показателей исходов операции

2. Определение множества допустимых исходов операции

3. Определение полезностей исходов операции

4. Определение полезности системы

62. Способами определения функции полезности являются следующие:

1. Анализ влияния исходов исследуемой операции на операцию более высокого уровня иерархии

2. Экспертные оценки

3. Аппроксимация

4. Интерпретация

63. Критерий эффективности это:

1. То, по чему сравнивают решения при выборе

2. Параметр, с помощью которого сравниваются решения при выборе

3. Мера, выражающая количественно эффективность каждого решения и служащая основой для выбора одного из них

4. Характеристика, выражающая количественно эффективность каждого решения и служащая основой для выбора одного из них

64. Целевая функция это:

1. Эффективность решения

2. Математическое выражение критерия эффективности решений

3. Один из способов записи критерия эффективности решения

4. Результаты оценки эффективности решения

65. Детерминированная операция это:

1. Операция в которой для каждого решения существует множество исходов операции с известными законами распределения

2. Операция, в которой для каждого решения существует множество исходов операции

3. Операция, в которой для каждого решения существует один вполне определенный исход операции

4. Операция в которой для каждого решения существует один исход операции с известным законом распределения

66. Вероятностная операция это:

1. Операция, в которой каждому решению ставится в соответствие множество исходов операции

2. Операция, в которой каждому решению ставится в соответствие множество исходов операции с известными законами распределения вероятностей на исходах

3. Операция, в которой каждому решению ставится в соответствие множество исходов операции с неизвестными законами распределения вероятностей на исходах

4. Операция в условиях риска

67. Неопределенная операция это:

1. Операция, в которой каждому решению соответствует определенный исход с неизвестным законом распределения вероятностей

2. Операция, в которой каждому решению могут соответствовать различные исходы

3. Операция, в которой каждому решению ставится в соответствие множество исходов операции с известными законами распределения вероятностей на исходах

4. Операция, в которой каждому решению могут соответствовать различные исходы с неизвестными законами распределения вероятностей на исходах

68. Какие из перечисленных этапов составляют процесс выработки решения?

1. Анализ условий проведения операции

2. Построение модели функционирования системы при проведении операции

3. Выбор оптимального решения в рамках построенной модели

4. Формирование принимаемого решения

69. В чем сущность метода комиссий?

1. В организации работы группы экспертов путем открытой дискуссии

2. В организации работы группы экспертов путем закрытой дискуссии

3. В проведении «мозгового штурма»

4. Во всесторонней оценке изучаемого явления, события, процесса
70. Основными свойствами экспертов при проведении групповой экспертизы должны быть:

1. Порядочность

2. Компетентность

3. Креативность

  • Tutorial

Недавно был на собеседовании на Middle QA на проект, который явно превышает мои возможности. Уделил много времени тому, чего не знал вообще и мало времени повторению простой теории, а зря.

Ниже основы основ для повторения перед собеседованием для Trainee and Junior: определение тестирования, качество , верификация / валидация , цели, этапы, тест план, пункты тест плана, тест дизайн, техники тест дизайна, traceability matrix , test case, чек-лист, дефект, error/deffect/failure , баг репорт, severity vs priority, уровни тестирования, виды / типы, подходы к интеграционному тестированию , принципы тестирования, статическое и динамическое тестирование, исследовательское / ad-hoc тестирование, требования, жизненный цикл бага, стадии разработки ПО, decision table, qa/qc/test engineer, диаграмма связей.

Все замечания, корректировки и дополнения очень приветствуются.

Тестирование программного обеспечения - проверка соответствия между реальным и ожидаемым поведением программы, осуществляемая на конечном наборе тестов, выбранном определенным образом. В более широком смысле, тестирование - это одна из техник контроля качества, включающая в себя активности по планированию работ (Test Management), проектированию тестов (Test Design), выполнению тестирования (Test Execution) и анализу полученных результатов (Test Analysis).

Качество программного обеспечения (Software Quality) - это совокупность характеристик программного обеспечения, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Верификация (verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе .
Также можно встретить иную интерпритацию:
Процесс оценки соответствия продукта явным требованиям (спецификациям) и есть верификация (verification), в то же время оценка соответствия продукта ожиданиям и требованиям пользователей - есть валидация (validation). Также часто можно встретить следующее определение этих понятий:
Validation - ’is this the right specification?’.
Verification - ’is the system correct to specification?’.

Цели тестирования
Повысить вероятность того, что приложение, предназначенное для тестирования, будет работать правильно при любых обстоятельствах.
Повысить вероятность того, что приложение, предназначенное для тестирования, будет соответствовать всем описанным требованиям.
Предоставление актуальной информации о состоянии продукта на данный момент.

Этапы тестирования:
1. Анализ продукта
2. Работа с требованиями
3. Разработка стратегии тестирования
и планирование процедур контроля качества
4. Создание тестовой документации
5. Тестирование прототипа
6. Основное тестирование
7. Стабилизация
8. Эксплуатация

Тест план (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Отвечает на вопросы:
Что надо тестировать?
Что будете тестировать?
Как будете тестировать?
Когда будете тестировать?
Критерии начала тестирования.
Критерии окончания тестирования.

Основные пункты тест плана
В стандарте IEEE 829 перечислены пункты, из которых должен (пусть - может) состоять тест-план:
a) Test plan identifier;
b) Introduction;
c) Test items;
d) Features to be tested;
e) Features not to be tested;
f) Approach;
g) Item pass/fail criteria;
h) Suspension criteria and resumption requirements;
i) Test deliverables;
j) Testing tasks;
k) Environmental needs;
l) Responsibilities;
m) Staffing and training needs;
n) Schedule;
o) Risks and contingencies;
p) Approvals.

Тест дизайн – это этап процесса тестирования ПО, на котором проектируются и создаются тестовые сценарии (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Роли, ответственные за тест дизайн:
Тест аналитик - определяет «ЧТО тестировать?»
Тест дизайнер - определяет «КАК тестировать?»

Техники тест дизайна

Эквивалентное Разделение (Equivalence Partitioning - EP) . Как пример, у вас есть диапазон допустимых значений от 1 до 10, вы должны выбрать одно верное значение внутри интервала, скажем, 5, и одно неверное значение вне интервала - 0.

Анализ Граничных Значений (Boundary Value Analysis - BVA). Если взять пример выше, в качестве значений для позитивного тестирования выберем минимальную и максимальную границы (1 и 10), и значения больше и меньше границ (0 и 11). Анализ Граничный значений может быть применен к полям, записям, файлам, или к любого рода сущностям имеющим ограничения.

Причина / Следствие (Cause/Effect - CE). Это, как правило, ввод комбинаций условий (причин), для получения ответа от системы (Следствие). Например, вы проверяете возможность добавлять клиента, используя определенную экранную форму. Для этого вам необходимо будет ввести несколько полей, таких как «Имя», «Адрес», «Номер Телефона» а затем, нажать кнопку «Добавить» - это «Причина». После нажатия кнопки «Добавить», система добавляет клиента в базу данных и показывает его номер на экране - это «Следствие».

Предугадывание ошибки (Error Guessing - EG). Это когда тестировщик использует свои знания системы и способность к интерпретации спецификации на предмет того, чтобы «предугадать» при каких входных условиях система может выдать ошибку. Например, спецификация говорит: «пользователь должен ввести код». Тестировщик будет думать: «Что, если я не введу код?», «Что, если я введу неправильный код? », и так далее. Это и есть предугадывание ошибки.

Исчерпывающее тестирование (Exhaustive Testing - ET) - это крайний случай. В пределах этой техники вы должны проверить все возможные комбинации входных значений, и в принципе, это должно найти все проблемы. На практике применение этого метода не представляется возможным, из-за огромного количества входных значений.

Попарное тестирование (Pairwise Testing) - это техника формирования наборов тестовых данных. Сформулировать суть можно, например, вот так: формирование таких наборов данных, в которых каждое тестируемое значение каждого из проверяемых параметров хотя бы единожды сочетается с каждым тестируемым значением всех остальных проверяемых параметров.

Допустим, какое-то значений (налог) для человека рассчитывается на основании его пола, возраста и наличия детей - получаем три входных параметра, для каждого из которых для тестов выбираем каким-то образом значения. Например: пол - мужской или женский; возраст - до 25, от 25 до 60, более 60; наличие детей - да или нет. Для проверки правильности расчётов можно, конечно, перебрать все комбинации значений всех параметров:

пол возраст дети
1 мужчина до 25 детей нет
2 женщина до 25 детей нет
3 мужчина 25-60 детей нет
4 женщина 25-60 детей нет
5 мужчина старше 60 детей нет
6 женщина старше 60 детей нет
7 мужчина до 25 дети есть
8 женщина до 25 дети есть
9 мужчина 25-60 дети есть
10 женщина 25-60 дети есть
11 мужчина старше 60 дети есть
12 женщина старше 60 дети есть

А можно решить, что нам не нужны сочетания значений всех параметров со всеми, а мы хотим только убедиться, что мы проверим все уникальные пары значений параметров. Т.е., например, с точки зрения параметров пола и возраста мы хотим убедиться, что мы точно проверим мужчину до 25, мужчину между 25 и 60, мужчину после 60, а также женщину до 25, женщину между 25 и 60, ну и женщину после 60. И точно так же для всех остальных пар параметров. И таким образом, мы можем получить гораздо меньше наборов значений (в них есть все пары значений, правда некоторые дважды):

пол возраст дети
1 мужчина до 25 детей нет
2 женщина до 25 дети есть
3 мужчина 25-60 дети есть
4 женщина 25-60 детей нет
5 мужчина старше 60 детей нет
6 женщина старше 60 дети есть

Такой подход примерно и составляет суть техники pairwise testing - мы не проверяем все сочетания всех значений, но проверяем все пары значений.

Traceability matrix - Матрица соответствия требований - это двумерная таблица, содержащая соответсвие функциональных требований (functional requirements) продукта и подготовленных тестовых сценариев (test cases). В заголовках колонок таблицы расположены требования, а в заголовках строк - тестовые сценарии. На пересечении - отметка, означающая, что требование текущей колонки покрыто тестовым сценарием текущей строки.
Матрица соответсвия требований используется QA-инженерами для валидации покрытия продукта тестами. МСТ является неотъемлемой частью тест-плана.

Тестовый сценарий (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Пример:
Action Expected Result Test Result
(passed/failed/blocked)
Open page «login» Login page is opened Passed

Каждый тест кейс должен иметь 3 части:
PreConditions Список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
Test Case Description Список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям
PostConditions Список действий, переводящих систему в первоначальное состояние (состояние до проведения теста - initial state)
Виды Тестовых Сценариев:
Тест кейсы разделяются по ожидаемому результату на позитивные и негативные:
Позитивный тест кейс использует только корректные данные и проверяет, что приложение правильно выполнило вызываемую функцию.
Негативный тест кейс оперирует как корректными так и некорректными данными (минимум 1 некорректный параметр) и ставит целью проверку исключительных ситуаций (срабатывание валидаторов), а также проверяет, что вызываемая приложением функция не выполняется при срабатывании валидатора.

Чек-лист (check list) - это документ, описывающий что должно быть протестировано. При этом чек-лист может быть абсолютно разного уровня детализации. На сколько детальным будет чек-лист зависит от требований к отчетности, уровня знания продукта сотрудниками и сложности продукта.
Как правило, чек-лист содержит только действия (шаги), без ожидаемого результата. Чек-лист менее формализован чем тестовый сценарий. Его уместно использовать тогда, когда тестовые сценарии будут избыточны. Также чек-лист ассоциируются с гибкими подходами в тестировании.

Дефект (он же баг) – это несоответствие фактического результата выполнения программы ожидаемому результату. Дефекты обнаруживаются на этапе тестирования программного обеспечения (ПО), когда тестировщик проводит сравнение полученных результатов работы программы (компонента или дизайна) с ожидаемым результатом, описанным в спецификации требований.

Error - ошибка пользователя, то есть он пытается использовать программу иным способом.
Пример - вводит буквы в поля, где требуется вводить цифры (возраст, количество товара и т.п.).
В качественной программе предусмотрены такие ситуации и выдаются сообщение об ошибке (error message), с красным крестиком которые.
Bug (defect) - ошибка программиста (или дизайнера или ещё кого, кто принимает участие в разработке), то есть когда в программе, что-то идёт не так как планировалось и программа выходит из-под контроля. Например, когда никак не контроллируется ввод пользователя, в результате неверные данные вызывают краши или иные «радости» в работе программы. Либо внутри программа построена так, что изначально не соответствует тому, что от неё ожидается.
Failure - сбой (причём не обязательно аппаратный) в работе компонента, всей программы или системы. То есть, существуют такие дефекты, которые приводят к сбоям (A defect caused the failure) и существуют такие, которые не приводят. UI-дефекты например. Но аппаратный сбой, никак не связанный с software, тоже является failure.

Баг Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Шапка
Короткое описание (Summary) Короткое описание проблемы, явно указывающее на причину и тип ошибочной ситуации.
Проект (Project) Название тестируемого проекта
Компонент приложения (Component) Название части или функции тестируемого продукта
Номер версии (Version) Версия на которой была найдена ошибка
Серьезность (Severity) Наиболее распространена пятиуровневая система градации серьезности дефекта:
S1 Блокирующий (Blocker)
S2 Критический (Critical)
S3 Значительный (Major)
S4 Незначительный (Minor)
S5 Тривиальный (Trivial)
Приоритет (Priority) Приоритет дефекта:
P1 Высокий (High)
P2 Средний (Medium)
P3 Низкий (Low)
Статус (Status) Статус бага. Зависит от используемой процедуры и жизненного цикла бага (bug workflow and life cycle)

Автор (Author) Создатель баг репорта
Назначен на (Assigned To) Имя сотрудника, назначенного на решение проблемы
Окружение
ОС / Сервис Пак и т.д. / Браузера + версия /… Информация об окружении, на котором был найден баг: операционная система, сервис пак, для WEB тестирования - имя и версия браузера и т.д.

Описание
Шаги воспроизведения (Steps to Reproduce) Шаги, по которым можно легко воспроизвести ситуацию, приведшую к ошибке.
Фактический Результат (Result) Результат, полученный после прохождения шагов к воспроизведению
Ожидаемый результат (Expected Result) Ожидаемый правильный результат
Дополнения
Прикрепленный файл (Attachment) Файл с логами, скриншот или любой другой документ, который может помочь прояснить причину ошибки или указать на способ решения проблемы

Severity vs Priority
Серьезность (Severity) - это атрибут, характеризующий влияние дефекта на работоспособность приложения.
Приоритет (Priority) - это атрибут, указывающий на очередность выполнения задачи или устранения дефекта. Можно сказать, что это инструмент менеджера по планированию работ. Чем выше приоритет, тем быстрее нужно исправить дефект.
Severity выставляется тестировщиком
Priority – менеджером, тимлидом или заказчиком

Градация Серьезности дефекта (Severity)

S1 Блокирующая (Blocker)
Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна. Решение проблемы необходимо для дальнейшего функционирования системы.

S2 Критическая (Critical)
Критическая ошибка, неправильно работающая ключевая бизнес логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, без возможности решения проблемы, используя другие входные точки. Решение проблемы необходимо для дальнейшей работы с ключевыми функциями тестируемой системой.

S3 Значительная (Major)
Значительная ошибка, часть основной бизнес логики работает некорректно. Ошибка не критична или есть возможность для работы с тестируемой функцией, используя другие входные точки.

S4 Незначительная (Minor)
Незначительная ошибка, не нарушающая бизнес логику тестируемой части приложения, очевидная проблема пользовательского интерфейса.

S5 Тривиальная (Trivial)
Тривиальная ошибка, не касающаяся бизнес логики приложения, плохо воспроизводимая проблема, малозаметная посредствам пользовательского интерфейса, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Градация Приоритета дефекта (Priority)
P1 Высокий (High)
Ошибка должна быть исправлена как можно быстрее, т.к. ее наличие является критической для проекта.
P2 Средний (Medium)
Ошибка должна быть исправлена, ее наличие не является критичной, но требует обязательного решения.
P3 Низкий (Low)
Ошибка должна быть исправлена, ее наличие не является критичной, и не требует срочного решения.

Уровни Тестирования

1. Модульное тестирование (Unit Testing)
Компонентное (модульное) тестирование проверяет функциональность и ищет дефекты в частях приложения, которые доступны и могут быть протестированы по-отдельности (модули программ, объекты, классы, функции и т.д.).

2. Интеграционное тестирование (Integration Testing)
Проверяется взаимодействие между компонентами системы после проведения компонентного тестирования.

3. Системное тестирование (System Testing)
Основной задачей системного тестирования является проверка как функциональных, так и не функциональных требований в системе в целом. При этом выявляются дефекты, такие как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования, отсутствующая или неверная функциональность, неудобство использования и т.д.

4. Операционное тестирование (Release Testing).
Даже если система удовлетворяет всем требованиям, важно убедиться в том, что она удовлетворяет нуждам пользователя и выполняет свою роль в среде своей эксплуатации, как это было определено в бизнес моделе системы. Следует учесть, что и бизнес модель может содержать ошибки. Поэтому так важно провести операционное тестирование как финальный шаг валидации. Кроме этого, тестирование в среде эксплуатации позволяет выявить и нефункциональные проблемы, такие как: конфликт с другими системами, смежными в области бизнеса или в программных и электронных окружениях; недостаточная производительность системы в среде эксплуатации и др. Очевидно, что нахождение подобных вещей на стадии внедрения - критичная и дорогостоящая проблема. Поэтому так важно проведение не только верификации, но и валидации, с самых ранних этапов разработки ПО.

5. Приемочное тестирование (Acceptance Testing)
Формальный процесс тестирования, который проверяет соответствие системы требованиям и проводится с целью:
определения удовлетворяет ли система приемочным критериям;
вынесения решения заказчиком или другим уполномоченным лицом принимается приложение или нет.

Виды / типы тестирования

Функциональные виды тестирования

Функциональное тестирование (Functional testing)
Тестирование пользовательского интерфейса (GUI Testing)
Тестирование безопасности (Security and Access Control Testing)
Тестирование взаимодействия (Interoperability Testing)

Нефункциональные виды тестирования

Все виды тестирования производительности:
o нагрузочное тестирование (Performance and Load Testing)
o стрессовое тестирование (Stress Testing)
o тестирование стабильности или надежности (Stability / Reliability Testing)
o объемное тестирование (Volume Testing)
Тестирование установки (Installation testing)
Тестирование удобства пользования (Usability Testing)
Тестирование на отказ и восстановление (Failover and Recovery Testing)
Конфигурационное тестирование (Configuration Testing)

Связанные с изменениями виды тестирования

Дымовое тестирование (Smoke Testing)
Регрессионное тестирование (Regression Testing)
Повторное тестирование (Re-testing)
Тестирование сборки (Build Verification Test)
Санитарное тестирование или проверка согласованности/исправности (Sanity Testing)

Функциональное тестирование рассматривает заранее указанное поведение и основывается на анализе спецификаций функциональности компонента или системы в целом.

Тестирование пользовательского интерфейса (GUI Testing) - функциональная проверка интерфейса на соответствие требованиям - размер, шрифт, цвет, consistent behavior.

Тестирование безопасности - это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.

Тестирование взаимодействия (Interoperability Testing) – это функциональное тестирование, проверяющее способность приложения взаимодействовать с одним и более компонентами или системами и включающее в себя тестирование совместимости (compatibility testing) и интеграционное тестирование

Нагрузочное тестирование - это автоматизированное тестирование, имитирующее работу определенного количества бизнес пользователей на каком-либо общем (разделяемом ими) ресурсе.

Стрессовое тестирование (Stress Testing) позволяет проверить насколько приложение и система в целом работоспособны в условиях стресса и также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию после прекращения воздействия стресса. Стрессом в данном контексте может быть повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера. Также одной из задач при стрессовом тестировании может быть оценка деградации производительности, таким образом цели стрессового тестирования могут пересекаться с целями тестирования производительности.

Объемное тестирование (Volume Testing). Задачей объемного тестирования является получение оценки производительности при увеличении объемов данных в базе данных приложения

Тестирование стабильности или надежности (Stability / Reliability Testing). Задачей тестирования стабильности (надежности) является проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки.

Тестирование установки направленно на проверку успешной инсталляции и настройки, а также обновления или удаления программного обеспечения.

Тестирование удобства пользования - это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий. Сюда также входит:
User eXperience (UX) - ощущение, испытываемое пользователем во время использования цифрового продукта, в то время как User interface - это инструмент, позволяющий осуществлять интеракцию «пользователь - веб-ресурс».

Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети). Целью данного вида тестирования является проверка систем восстановления (или дублирующих основной функционал систем), которые, в случае возникновения сбоев, обеспечат сохранность и целостность данных тестируемого продукта.

Конфигурационное тестирование (Configuration Testing) - специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)

Дымовое (Smoke) тестирование рассматривается как короткий цикл тестов, выполняемый для подтверждения того, что после сборки кода (нового или исправленного) устанавливаемое приложение, стартует и выполняет основные функции.

Регрессионное тестирование - это вид тестирования направленный на проверку изменений, сделанных в приложении или окружающей среде (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб сервер или сервер приложения), для подтверждения того факта, что существующая ранее функциональность работает как и прежде. Регрессионными могут быть как функциональные, так и нефункциональные тесты.

Повторное тестирование - тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.
В чем разница между regression testing и re-testing?
Re-testing - проверяется исправление багов
Regression testing - проверяется то, что исправление багов, а также любые изменения в коде приложения, не повлияли на другие модули ПО и не вызвало новых багов.

Тестирование сборки или Build Verification Test - тестирование направленное на определение соответствия, выпущенной версии, критериям качества для начала тестирования. По своим целям является аналогом Дымового Тестирования, направленного на приемку новой версии в дальнейшее тестирование или эксплуатацию. Вглубь оно может проникать дальше, в зависимости от требований к качеству выпущенной версии.

Санитарное тестирование - это узконаправленное тестирование достаточное для доказательства того, что конкретная функция работает согласно заявленным в спецификации требованиям. Является подмножеством регрессионного тестирования. Используется для определения работоспособности определенной части приложения после изменений произведенных в ней или окружающей среде. Обычно выполняется вручную.

Подходы к интеграционному тестированию:
Снизу вверх (Bottom Up Integration)
Все низкоуровневые модули, процедуры или функции собираются воедино и затем тестируются. После чего собирается следующий уровень модулей для проведения интеграционного тестирования. Данный подход считается полезным, если все или практически все модули, разрабатываемого уровня, готовы. Также данный подход помогает определить по результатам тестирования уровень готовности приложения.
Сверху вниз (Top Down Integration)
Вначале тестируются все высокоуровневые модули, и постепенно один за другим добавляются низкоуровневые. Все модули более низкого уровня симулируются заглушками с аналогичной функциональностью, затем по мере готовности они заменяются реальными активными компонентами. Таким образом мы проводим тестирование сверху вниз.
Большой взрыв («Big Bang» Integration)
Все или практически все разработанные модули собираются вместе в виде законченной системы или ее основной части, и затем проводится интеграционное тестирование. Такой подход очень хорош для сохранения времени. Однако если тест кейсы и их результаты записаны не верно, то сам процесс интеграции сильно осложнится, что станет преградой для команды тестирования при достижении основной цели интеграционного тестирования.

Принципы тестирования

Принцип 1 – Тестирование демонстрирует наличие дефектов (Testing shows presence of defects)
Тестирование может показать, что дефекты присутствуют, но не может доказать, что их нет. Тестирование снижает вероятность наличия дефектов, находящихся в программном обеспечении, но, даже если дефекты не были обнаружены, это не доказывает его корректности.

Принцип 2 – Исчерпывающее тестирование недостижимо (Exhaustive testing is impossible)
Полное тестирование с использованием всех комбинаций вводов и предусловий физически невыполнимо, за исключением тривиальных случаев. Вместо исчерпывающего тестирования должны использоваться анализ рисков и расстановка приоритетов, чтобы более точно сфокусировать усилия по тестированию.

Принцип 3 – Раннее тестирование (Early testing)
Чтобы найти дефекты как можно раньше, активности по тестированию должны быть начаты как можно раньше в жизненном цикле разработки программного обеспечения или системы, и должны быть сфокусированы на определенных целях.

Принцип 4 – Скопление дефектов (Defects clustering)
Усилия тестирования должны быть сосредоточены пропорционально ожидаемой, а позже реальной плотности дефектов по модулям. Как правило, большая часть дефектов, обнаруженных при тестировании или повлекших за собой основное количество сбоев системы, содержится в небольшом количестве модулей.

Принцип 5 – Парадокс пестицида (Pesticide paradox)
Если одни и те же тесты будут прогоняться много раз, в конечном счете этот набор тестовых сценариев больше не будет находить новых дефектов. Чтобы преодолеть этот “парадокс пестицида”, тестовые сценарии должны регулярно рецензироваться и корректироваться, новые тесты должны быть разносторонними, чтобы охватить все компоненты программного обеспечения,
или системы, и найти как можно больше дефектов.

Принцип 6 – Тестирование зависит от контекста (Testing is concept depending)
Тестирование выполняется по-разному в зависимости от контекста. Например, программное обеспечение, в котором критически важна безопасность, тестируется иначе, чем сайт электронной коммерции.
Принцип 7 – Заблуждение об отсутствии ошибок (Absence-of-errors fallacy)
Обнаружение и исправление дефектов не помогут, если созданная система не подходит пользователю и не удовлетворяет его ожиданиям и потребностям.

Cтатическое и динамическое тестирование
Статическое тестирование отличается от динамического тем, что производится без запуска программного кода продукта. Тестирование осуществляется путем анализа программного кода (code review) или скомпилированного кода. Анализ может производиться как вручную, так и с помощью специальных инструментальных средств. Целью анализа является раннее выявление ошибок и потенциальных проблем в продукте. Также к статическому тестированию относится тестирования спецификации и прочей документации.

Исследовательское / ad-hoc тестирование
Простейшее определение исследовательского тестирования - это разработка и выполнения тестов в одно и то же время. Что является противоположностью сценарного подхода (с его предопределенными процедурами тестирования, неважно ручными или автоматизированными). Исследовательские тесты, в отличие от сценарных тестов, не определены заранее и не выполняются в точном соответствии с планом.

Разница между ad hoc и exploratory testing в том, что теоретически, ad hoc может провести кто угодно, а для проведения exploratory необходимо мастерство и владение определенными техниками. Обратите внимание, что определенные техники это не только техники тестирования.

Требования – это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения. Что, а не как.

Требования к требованиям:
Корректность
Недвусмысленность
Полнота набора требований
Непротиворечивость набора требований
Проверяемость (тестопригодность)
Трассируемость
Понимаемость

Жизненный цикл бага

Стадии разработки ПО - это этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широко круга пользователей. Разработка ПО начинается с первоначального этапа разработки (стадия «пре-альфа») и продолжается стадиями, на которых продукт дорабатывается и модернизируется. Финальным этапом этого процесса становится выпуск на рынок окончательной версии программного обеспечения («общедоступного релиза»).

Программный продукт проходит следующие стадии:
анализ требований к проекту;
проектирование;
реализация;
тестирование продукта;
внедрение и поддержка.

Каждой стадии разработки ПО присваивается определенный порядковый номер. Также каждый этап имеет свое собственное название, которое характеризует готовность продукта на этой стадии.

Жизненный цикл разработки ПО:
Пре-альфа
Альфа
Бета
Релиз-кандидат
Релиз
Пост-релиз

Таблица принятия решений (decision table) – великолепный инструмент для упорядочения сложных бизнес требований, которые должны быть реализованы в продукте. В таблицах решений представлен набор условий, одновременное выполнение которых должно привести к определенному действию.

(Шпаргалка)

  • Краснов Б.И., Авцинова Г.И., Сосина И.А. Политический анализ, прогноз, технологии (Документ)
  • Тест - Планирование на предприятии (Шпаргалка)
  • Бояркин Г.Н., Шевелева О.Г. Теория систем и системный анализ (Документ)
  • Гайдес М.А. Общая теория систем (системы и системный анализ) (Документ)
  • Живицкая Е.Н. Системный анализ и проектирование. Конспект лекций (Документ)
  • Антонов А.В. Системный анализ. Учебник для вузов (Документ)
  • Тест по дисциплине Логика и теория аргументации (Шпаргалка)
  • n1.doc

    Варианты тестовых заданий

    1. Модели по форме бывают:

    а) графические;

    б) стационарные;

    в) вербальные;

    г) каузальные.
    2. Состояние системы определяется:

    а) множеством значений управляющих переменных;

    б) скоростью изменения выходных переменных;

    в) множеством характерных свойств системы

    г) множеством значений возмущающих воздействий.
    3. Равновесие системы определяют как:

    а) способность системы сохранять свое состояние сколь угодно долго в отсутствии внешних возмущений;

    б) способность системы возвращаться в исходное состояние после снятия возмущений;

    в) способность системы двигаться равноускоренно сколь угодно долго при постоянных воздействиях;

    г) способность системы сохранять свое состояние сколь угодно долго при постоянных воздействиях;
    4. Устойчивость можно определить как:

    а) способность системы сохранять свое состояние сколь угодно долго при постоянных воздействиях;

    б) способность системы двигаться равноускоренно сколь угодно долго при постоянных воздействиях;

    в) способность системы возвращаться в исходное состояние после снятия возмущений;

    г) способность системы сохранять свое состояние сколь угодно долго в отсутствии внешних возмущений;
    5. Развитие обязательно связано с:

    а) увеличением в количестве;

    б) увеличением энергетических ресурсов;

    в) увеличением в размерах;

    г) изменением целей.
    6. Энтропия системы возрастает при:

    а) полной изоляции системы от окружающей среды;

    б) получении системой информации;

    в) получении системой материальных ресурсов;

    г) внешних управляющих воздействиях на систему.
    7. В статической системе:

    а) неизменная структура;

    б) неизменны характеристики;

    в) неизменны возмущения;

    г) неизменно состояние.
    8. Динамическая система – это:

    а) система, с изменяющимся во времени состоянием;

    б) система, с изменяющейся во времени структурой;

    в) система, с изменяющимися во времени параметрами;

    г) система, с изменяющимися во времени характеристиками.
    9. Интегрирующее звено описывается уравнением:

    а) y = kx ’;

    б) y = kx ;

    в) y ’ = kx ;

    г) Ty ’+ y = kx ’;
    10. y = kx – это уравнение описывает поведение:

    а) безынерционного звена;

    б) инерционного звена;

    в) колебательного звена;

    г) идеального дифференцирующего звена;
    11. Динамические характеристики:

    а) – характеристики изменяющиеся во времени;

    б) – характеристики не изменяющиеся во времени;

    в) характеризуют зависимость изменения выходных переменных от входных и времени;

    г) характеризуют реакцию системы на изменение входных переменных.
    12. Закономерности функционирования систем;

    а) справедливы для любых систем;

    б) справедливы всегда;

    в) справедливы иногда;

    г) справедливы «как правило».
    13. Закономерность развития во времени – историчность:

    а) справедлива только для технических систем;

    б) справедлива только для биологических систем;

    в) справедлива только для экономических систем;

    г) справедлива для всех систем.
    14. Способность системы достигнуть определенного состояния (эквифинальность) зависит от:

    а) времени;

    б) параметров системы;

    в) начальных условий;

    г) возмущений.
    15. Эмерджентность проявляется в системе в виде:

    а) неравенстве свойств системы сумме свойств, составляющих ее элементов;

    б) изменения во всех элементах системы при воздействии на любой ее элемент;

    в) появлении у системы новых интегративных качеств, не свойственных ее элементам.

    г) равенства свойств системы сумме свойств, составляющих ее элементов.
    16. Аддитивность – это:

    а) разновидность эмерджентности;

    б) противоположность эмерджентности;

    в) модифицированная эмерджентность;

    г) независимость элементов друг от друга.
    17. При прогрессивной систематизации:

    а) поведение системы становится физически суммативным;

    б) элементы систем все больше зависят друг от друга;

    в) система все в большей мере ведет себя как целостность;

    г) элементы систем все больше зависят друг от друга;
    18. Коммуникативность при иерархической упорядоченности систем проявляется в виде:

    а) связи системы с системами одного уровня с рассматриваемой;

    б) обратной связи в системе;

    в) связи системы с надсистемой;

    г) связи системы с подсистемами или элементами.
    19. Технические системы – это:

    а) совокупность технических решений;

    б) совокупность взаимосвязанных технических элементов;

    в) естественная система;

    г) действующая система.
    20. Технологическая система – это:

    а) совокупность взаимосвязанных технических элементов;

    б) искусственная система;

    в) абстрактная система;

    г) совокупность операций (действий).
    21. Экономическая система – это:

    а) совокупность мероприятий;

    б) совокупность экономических отношений;

    в) создаваемая система;

    г) материальная система.
    22. Организационная система обеспечивает:

    а) координацию действий;

    б) развитие основных функциональных элементов системы;

    в) социальное развитие людей;

    г) функционирование основных элементов системы.
    23. Централизованная система – это:

    а) система, в которой некоторый элемент играет главную, доминирующую роль;

    б) система, в которой небольшие изменения в ведущем элементе вызывают значительные изменения всей системы;

    в) система, в которой имеется элемент, значительно отличающийся по размеру от остальных;

    г) детерминированная система.
    24. Открытая система – это система:

    а) способная обмениваться с окружающей средой информацией;

    б) в которой возможно снижение энтропии;

    в) в которой энтропия только повышается;

    г) способная обмениваться с окружающей средой энергией.
    25. Системы, способные к выбору своего поведения, называются:

    а) каузальными;

    б) активными;

    в) целенаправленными;

    г) гетерогенными.
    26. Системы, у которых изменяются параметры, называются:

    а) стационарными;

    б) многомерными;

    в) стохастическими;

    г) нестационарными.
    27. Сложная система:

    а) имеет много элементов;

    б) имеет много связей;

    в) ее нельзя подробно описать;

    г) имеет разветвленную структуру и разнообразие внутренних связей.
    28. Детерминированная система:

    а) имеет предсказуемое поведение на 99%;

    б) имеет предсказуемое поведение на 100%;

    в) непредсказуемая;

    г) имеет предсказуемое поведение с вероятностью более 0,5.
    29. Система, в которой известны все элементы и связи между ними в виде однозначных зависимостей (аналитических или графических), можно отнести к:

    а) детерминированной системе;

    б) хорошо организованной системе;

    в) диффузной системе;

    г) линейной системе.
    30. К особенностям экономических систем, как самоорганизующихся, относятся:

    а) каузальность;

    б) стохастичность;

    в) способность противостоять энтропийным тенденциям;

    г) способность и стремление к целеобразованию.
    31. Главные особенности системного подхода:

    а) подход к любой проблеме как с системе;

    б) мысль движется от элементов к системе;

    в) мысль движется от системы к элементам;

    г) в центре изучения лежит элемент и его свойства.
    32. Исследование и проектирование системы с точки зрения обеспечения ее жизнедеятельности в условиях внешних и внутренних возмущений называется:

    а) системно-информационным подходом;

    б) системно-управленческим подходом;

    в) системно-функциональным подходом;

    г) системно-структурным подходом;
    33. При построении математической модели возникают следующие проблемы:

    а) определение числа параметров модели;

    б) определение значений параметров модели;

    в) выбор структуры модели;

    г) выбор критерия оценки качества модели;
    34. Метод наименьших квадратов применяется при:

    а) определении параметров модели;

    б) выборе структуры модели;

    в) аналитическом подходе;

    г) оценке точности модели.
    35. Аналитический подход к построению математической модели требует наличия:

    а) экспериментальных данных;

    б) нестационарности объекта;

    в) знаний закономерностей, действующих в системе;

    г) стохастичности объекта.
    36. Наилучшей считается модель, которая имеет:

    а) нулевую ошибку на экспериментальных данных;

    б) больше всего параметров (коэффициентов);

    в) наименьшую ошибку на контрольных точках;

    г) включает наибольшее число переменных.

    37. Система – это:

    а) множество элементов;

    б) представление об объекте с точки зрения поставленной цели;

    в) совокупность взаимосвязанных элементов;

    г) объект изучения, описания, проектирования и управления.
    38. Элемент системы:

    а) неделим в рамках поставленной задачи;

    б) неделимая часть системы;

    в) основная часть системы;

    г) обязательно имеет связи с другими элементами системы.
    39. Свойство:

    а) абсолютно;

    б) относительно;

    в) проявляется только при взаимодействии с другим объектом;

    г) сторона объекта, обуславливающее его сходство с другими объектами.
    40. Свойство:

    а) сторона объекта, обуславливающее его отличие от других объектов.

    б) присуще всем объектам;

    в) присуще только системам;

    г) неизменная характеристика объекта.
    41. Связь:

    а) объединяет элементы и свойства в целое;

    б) – это способ взаимодействия входов и выходов элементов;

    в) – это то, без чего нет системы;

    г) ограничивает свободу элементов;
    42. Стратификация системы (проблемы) предназначена для:

    а) более краткого описания системы (проблемы);

    б) детализации описания системы (проблемы);

    в) простоты описания системы (проблемы);

    г) представления системы (проблемы) в виде совокупности моделей разного уровня абстракции.
    43. Проектирование системы в виде слоев производится для:

    а) организации управления и принятия решения в сложных системах;

    б) распределения уровней ответственности при принятии решений;

    в) простоты описания системы управления;

    г) повышения точности управления.
    44. При организации системы в виде эшелонов:

    а) элементы системы всех уровней имеют полную свободу в выборе их собственных решений;

    б) повышается эффективность ее функционирования;

    в) элементы системы принимают решения только на основании целей, заданных вышестоящими элементами;

    г) горизонтальные связи с элементами одного уровня иерархии сильнее вертикальных связей.
    45.Эффективность структур оценивается:

    а) живучестью;

    б) точностью;

    в) оперативностью;

    г) объемом.
    46. Положительная обратная связь:

    а) всегда усиливает влияние входных воздействий на выходные переменные;

    б) всегда увеличивает значение выходной переменной;

    в) ускоряет переходные процессы;

    г) усиливает влияние нестационарности.
    47. Отрицательная обратная связь:

    а) замедляет переходные процессы;

    б) уменьшает влияние помех на систему;

    в) всегда уменьшает отклонение выходных переменных;

    г) всегда уменьшает значение выходной переменной.
    48. Примерами положительной обратной связи являются:

    а) рост живых клеток;

    б) ядерная реакция;

    в) спрос и предложение на рынке;

    г) паника.
    49. Примерами отрицательной обратной связи являются:

    а) температур тела;

    б) езда на велосипеде;

    в) регулирование ассортимента;

    г) уверенность в себе.
    50. Потребность:

    а) является следствием проблемы;

    б) является причиной проблемы;

    в) вытекает из желания;

    г) формируется из цели.
    51. Желание – это:

    а) объективная потребность;

    б) субъективная потребность;

    в) осознанная потребность;

    г) разность между потребностью и действительностью.
    52. Проблема:

    а) является следствием потребности;

    б) является следствием желания;

    в) является следствием цели;

    г) появляется при неизвестном алгоритме решении задачи.
    53. Цель – это:

    а) вариант удовлетворения желания;

    б) любая альтернатива при принятии решения;

    в) то, что позволит снять проблему;

    г) модель будущего результата.
    54. Цель имеет следующие особенности:

    а) цель порождает проблему;

    б) всегда несет в себе элементы неопределенности;

    в) цель является средством оценки будущего результата;

    г) выбор цели сугубо субъективный.
    55. Цель при анализе объекта:

    а) выявить способы устранения проблемы;

    б) выявить наличие противоречий;

    в) выявить причины возникновения проблемной ситуации;

    г) выявить место противоречий.
    56. Цель при описании объекта:

    а) выявить место возникновения проблемной ситуации;

    б) представить проблемную ситуацию в виде, удобном для анализа;

    в) разрешить проблемную ситуацию с помощью нового объекта;

    г) подержание функционирование объекта в соответствии с заданием.
    57. Превращение проблемы в проблематику необходимо:

    а) для оценки ограничений на управление;

    б) при оценке степени достижения цели;

    в) для учета интересов всех окружающих систем;

    г) при формулировке цели.
    58. При формулировке цели возможны следующие опасности:

    а) смешение целей;

    б) замена целей критериями;

    в) подмены целей средствами;

    г) изменение проблемы.
    59. Для цели характерно:

    а) замена ее желанием;

    б) изменение ее во времени;

    в) влияние ценностей на цели;

    г) отказ от достижения цели.
    60. Критерий является:

    а) количественной модель цели;

    б) качественной модель цели;

    в) инструментом оценки альтернатив;

    г) инструментом оценки степени достижения цели.
    61. Входные переменные подразделяются на:

    а) управляющие переменных;

    б) выходные переменные;

    в) помехи;

    г) детерминированные переменные.


    1. Что лежит в основе принципа разомкнутого (программного) управления:
    а) идея автономного воздействия на систему вне зависимости от условий ее работы;

    б) воздействие на конкретный объект внутри системы;

    г) идея компенсации возмущений вызванных воздействием на объект;

    д) идея программирования изменения во времени состояния системы.
    63. Что лежит в основе принципа разомкнутого управления с компенсацией возмущений:

    а) фиксация информации о внешних возмущениях и контроль отклонений параметров системы;

    б) использование корректирующего управления на систему;

    в) ликвидировать нерегулируемое воздействие возмущений на движение;

    г) использование программного управления на систему;

    д) идея автономного воздействия на систему вне зависимости от условий ее работы.
    64. Что лежит в основе принципа замкнутого управления:

    а) выбор оптимального поведения системы при известном её поведении в конкретный момент времени;

    б) реализация управления путем введения обратной связи;

    в) разработка алгоритма программы управления объектом;

    г) решение задач управления путем введения отрицательной обратной связи;

    д) фиксация информации о внешних возмущениях и контроль отклонений параметров системы.
    65. Что лежит в основе метода дуального управления:

    а) использование управляющих сигналов, реакция на которые заранее определена;

    б) использование дополнительных сигналов, реакция на которые заранее определена;

    в) команды управления подаются из разных источников;

    г) использование обратной связи;

    д) использование дуальных идентичных сигналов при воздействии на один объект.
    66. К какому классу систем относятся «Самонастраивающиеся системы»:

    а) аналитические системы;

    б) адаптивные системы;

    в) искусственный интеллект;

    г) экспертные системы;

    д) самоорганизующиеся системы.
    67. Что лежит в основе принципа однократного управления:

    а) однократное использование обратной связи;

    б) принятие некоторого решения, последствия которого длятся недолго;

    в) использование функционала в качестве критерия;

    г) идея однократного воздействия на систему вне зависимости от условий ее работы;

    д) принятие некоторого решения, последствия которого сохраняются длительное время.
    68. Выберите правильную последовательность этапов теоретического исследования системы:


        1. разработка модели системы и изучение ее динамики

        2. определение состава управлений, ресурсов и ограничений

        3. анализ назначения системы и выработка допущений и ограничений

        4. выделение системы из среды и установление их взаимодействий

        5. выработка концепции и алгоритма оптимального управления

        6. назначение цели как требуемого конечного состояния

        7. избрание принципа управления

        8. выбор совокупности критериев и их ранжирование посредством использования системы предпочтений
    а) 3 5 6 4 1 2 7 8;

    б) 1 2 3 4 5 6 7 8;

    в) 4 3 1 7 2 8 6 5;

    г) 8 7 3 2 1 6 5 4;

    д) 7 3 1 2 4 5 6 8.
    69. Каким образом осуществляется структуризация среды:

    а) путем внесения в нее порядка;

    б) путем использования функционала в качестве критерия;

    в) путем внесения в нее дополнительных элементов;

    г) путем внесения в нее обратной связи;

    д) путем внесения в нее алгоритма программы управления объектом.
    70. Что подразумевается под устойчивостью системы:

    а) свойство системы использовать сохраненное состояние для возврата к нему после какого-либо воздействия;

    б) способность системы развиваться в условиях нехватки ресурсов;

    в) степень упорядоченности её элементов;

    г) свойство системы возвращаться в прежнее или близкое к нему состояние после какого-либо воздействия на неё;

    д) внутренне единство элементов системы.
    71. На каком этапе жизненного цикла происходит процесс самоорганизация системы:

    а) внедрение;

    б) проектирование;

    в) планирование и анализ требований;

    г) эксплуатация;

    д) реализация;

    е) во время всего жизненного цикла системы.
    72. Выберите правильную последовательность жизненного цикла системы:


        1. внедрение

        2. проектирование

        3. планирование и анализ требований

        4. эксплуатация

        5. реализация
    а) 3 2 5 1 4;

    д) 5 4 1 2 3.
    73. Что можно предпринять при создании системы в неорганизованной неподготовленной для её существования среде:

    а) использовать корректирующего управления на систему;

    б) можно начать сеять «зубы дракона», которые прорастая, послужат вам элементами будущей системы;

    в) ограничить влияние среды на создаваемую систему;

    г) реализация управления путем введения обратной связи;

    д) можно преобразовать среду, превратив её в организованную, способную воспринять новую систему.
    74. Дайте верное определение системы:

    а) совокупность связей между объектами;

    б) совокупность элементов и связей между ними, приобретающая свойства неприсущие ее элементам по отдельности;

    в) некоторая последовательность элементов;

    г) совокупность объектов, связи между которыми усиливают их свойства;

    д) совокупность не связанных между собой объектов.
    75. В чем суть системного подхода:

    а) рассмотрение объектов как систем;

    б) декомпозиция системы на объекты;

    в) объединение подсистем в единую систему;

    г) рассмотрение систем как объектов;

    д) выявление связей между системами.
    76. Выдерите верное определение целостности системы:

    а) внутреннее единство, принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов;

    б) внесение порядка в систему;

    в) свойство системы возвращаться в прежнее или близкое к нему состояние после какого-либо воздействия на неё;

    г) совокупность элементов;

    д) свойство системы, характеризующее ее соответствие целевому назначению.
    77. Дайте определение эффективности системы:

    а) свойство системы возвращаться в исходное состояние;

    б) свойство системы, характеризующее ее соответствие целевому назначению в определенных условиях использования и с учетом затрат на ее проектирование, изготовление и эксплуатацию;

    в) характеристика системы, указывающая степень воздействия каждого элемента на систему в целом;

    г) характеристика системы, при которой все элементы обладают рядом общих свойств;

    д) внутреннее единство, принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов;
    78. Закончите фразу: «Для поддержания целостности системы в условиях изменяющейся среды и внутренних трансформаций (случайных или преднамеренных) требуется особая организация системы, обеспечивающая ее …»:

    а) самоорганизацию;

    б) бифуркацию;

    в) структуризацию;

    г) устойчивость;

    д) целостность.
    79. Какова цель создания системы:

    а) преобразование окружающей среды;

    б) организация объектов в единое целое;

    в) объединение элементов с общими свойствами;

    г) воплощение определенных свойств в системе;

    д) все указанные выше варианты;
    80. Говоря о системе подразумевают:

    а) только объект управления;

    б) только управляющую систему;

    в) объект управления и управляющую систему;

    г) объект управления и управляющую им систему, предполагая, что система управляется;

    д) локализованную управляющую часть.
    81. Описание системы представляет собой:

    а) выражение ее содержания через выполняемые функции;

    б) назначение системы;

    в) описание свойств ее элементов;

    г) выделение ее элементов;

    д) описание связей элементов.
    82. В каких случаях целесообразно использовать модель:

    а) для отражения планируемых свойств;

    б) когда оригинал заведомо дешевле стоимости модели;

    в) при недоступности оригинала для испытаний;

    г) при необходимости смоделировать поведение системы в длительном периоде;

    д) всегда.
    83. Выберите классификационные признаки модели:

    а) дуальное управление;

    б) степень детализации модели;

    в) способность самоорганизации;

    г) реализация принципа замкнутого управления;

    д) деление по функциональным качествам системы.
    84. Выберите правильное определение состояния системы:

    а) совокупность состояний, обобщающих все возможные изменения системы в процессе функционирования;

    б) набор показателей системы в конкретный момент времени;

    в) связи между объектами системы, однозначно характеризующие их последующие изменения;

    г) совокупность параметров, характеризующих функционирование системы, которая однозначно определяет ее последующие изменения;

    д) ни одно из указанных выше.
    85. В чем заключается основная идея кибернетики:

    а) сходство структур и функций у систем управления различной природы;

    б) сходство элементов системы;

    в) наличие определенной цели у системы;

    г) различие функций у различных систем;

    д) ни один из вариантов неверный.
    86. Каково назначение имитационных моделей?

    а) служат «заместителем» оригинала;

    б) служат для отображения взаимодействия между элементами внутри исследуемого объекта;

    в) описывают в общем виде преобразование информации в системе;

    г) наполняются математическим содержанием;

    д) обеспечивают выдачу выходного сигнала моделируемой системы, если на ее взаимодействующие подсистемы поступает входной сигнал.
    87. Критериями эффективности называют:

    а) количественные критерии, позволяющие оценивать результаты принимаемых решений;

    б) качественные критерии, позволяющие оценивать результаты принимаемых решений;

    в) информация о проделанной системой работе;

    г) показатели, служащие для оценки работы системы;

    д) качественные критерии, позволяющие оценить соответствие модели исследуемому объекту.
    88. Что понимают под структурой системы:

    а) совокупность связей системы;

    б) построение элементов системы;

    в) совокупность функциональных элементов системы, объединенных связями;

    г) совокупность элементов системы;

    д) совокупность выходных параметров.
    89. Дайте определение связи:

    а) свойство (или свойства) множества объектов и (или) событий, которыми они (объекты) не обладают, если взять их по отдельности;

    б) способ объединения объектов системы;

    в) взаимодействие между объектами;

    г) группировка объектов по определенному признаку;

    д) последовательность объектов, определяющая их роль в системе.
    90. Что такое стратификация среды:

    а) принцип использования программного управления на систему;

    б) принцип, в котором к описанию среды следует подходить как к иерархической структуре;

    в) принцип выбора оптимального поведения системы при известном её поведении в конкретный момент времени;

    г) принцип ликвидации нерегулируемого воздействия возмущений на движение;

    д) принцип использования управляющих сигналов, реакция на которые заранее определена.
    91. Простейшая единица системы:

    а) объект, выполняющий определенные функции и не подлежащий разделению в рамках поставленной задачи;

    б) часть системы, состоящая из нескольких подсистем;

    в) объект, служащий для связи подсистем в системе;

    г) функция системы;

    д) объект, обуславливающий различие или сходство системы с другими системами.
    92. Управление – это:

    а) воздействие на возмущающие переменные;

    б) воздействие на объект для достижения заданной цели;

    в) воздействие на выходную переменную;

    г) изменение структуры объекта.
    93. Для управления используются ресурсы:

    а) людские;

    б) финансовые;

    в) информационные;

    г) энергетические.
    94. Цель управления может ставиться:

    а) органом целеполагания;

    б) объектом управления;

    в) субъектом управления

    г) окружающей средой.
    95. Без математической модели можно обойтись при решении задачи:

    а) стабилизации;

    б) программного управления;

    в) поискового управления;

    г) оптимального управления.
    96. Математическая модель обязательно необходима при:

    а) оптимизации;

    в) оптимальном управлении в динамике;

    г) стабилизации.
    97. Что бы система управления считалась автоматизированной необходимо:

    а) наличие компьютеров;

    в) Интернет;

    г) компьютерных сетей.
    98. В автоматизированной системе управления можно обойтись без человека:

    а) при принятии решения;

    б) при сборе данных;

    в) при вводе данных;

    г) при обработке данных.
    99. Без обратной связи можно обойтись при:

    а) стабилизации;

    б) экстремальном регулировании;

    в) оптимизации;

    г) программном управлении.
    100. Разомкнутая система управления отличается:

    а) высокой надежностью;

    г) простотой реализации.
    101. Замкнутая система управления отличается:

    а) высокой надежностью;

    б) высокой точностью управления;

    в) высокой скоростью реакции на возмущение

    г) простотой реализации.
    102. Какой из законов регулирования отличается точностью управления:

    а) позиционный;

    б) пропорциональный;

    в) дифференциальный;

    г) интегральный.
    103. Какой из законов регулирования отличается повышенной чувствительностью:

    а) позиционный;

    б) пропорциональный;

    в) дифференциальный;

    г) интегральный.
    104. Какой из законов регулирования можно использовать при управлении по возмущению:

    а) позиционный;

    б) пропорциональный;

    в) дифференциальный;

    г) интегральный.
    105. Какой из законов регулирования можно использовать при управлении по отклонению:

    а) позиционный;

    б) пропорциональный;

    в) дифференциальный;

    г) интегральный.
    106. Какой из законов регулирования можно использовать при управлении по заданию:

    а) позиционный;

    б) пропорциональный;

    в) дифференциальный;

    г) интегральный.
    107. Задача экстремального регулирования отличается от задачи оптимизации:

    а) отсутствием критерия управления;

    б) отсутствием ограничений;

    в) отсутствием модели объекта;

    г) многократностью определения оптимального значения управления.
    108. Целью задачи оптимального управления является:

    а) определения значения управляющего воздействия, приводящего к оптимуму критерий;

    б) достижение оптимума критерия управления;

    в) выполнение ограничений;

    г) компенсация возмущений.
    109. Ограничения первого рода в оптимальном управлении – это:

    а) ограничения на ресурсы;

    б) ограничения на возмущения;

    в) ограничения, связанные с динамическими свойствами объекта управления;

    г) нижняя граница значения управленческого воздействия.
    110. Ограничения второго рода в оптимальном управлении – это:

    а) верхняя граница значения управленческого воздействия;

    б) ресурсные ограничения;

    в) ограничения на помехи;

    г) физические ограничения

    111. При многокритериальной оптимизации:

    а) имеется единственное решение;

    б) имеются много решений;

    в) нельзя найти решение;

    г) решение можно найти при дополнительной информации заказчика.
    112. Область Парето – это:

    а) множество решений на границе ограничений;

    б) верхняя граница значений критериев;

    в) нижняя граница значений критериев;

    г) наибольшее значение управляющего воздействия.
    113. При решении задачи многокритериальной оптимизации выбирается наиболее важный критерий, а остальные критерии:

    а) отбрасываются;

    б) принимают максимальные значения;

    в) принимают вид ограничений;

    г) принимают минимальные значения.
    114. При решении задачи многокритериальной оптимизации частные критерии суммируются, при этом критерии умножаются на весовые коэффициенты, которые:

    а) показывают важность критерия;

    б) повышают точность решения задачи

    в) масштабируют критерии;

    г) сокращают область ограничений.
    115. Адаптация – это:

    а) процесс изменения параметров системы;

    б) процесс выбора критериев функционирования;

    в) процесс изменения окружающей среды;

    г) процесс изменения структуры системы.
    116. Адаптация – это:

    а) процесс приспособления к окружающей среде;

    б) процесс изменения окружающей среды;

    в) процесс выбора оптимального значения управляющего воздействия;

    г) процесс изменения возмущающего воздействия.
    117. Сложная система отличается:

    а) «нетерпимостью» к управлению;

    б) детерминированостью;

    в) каузальностью;

    г) нестационарностью.
    118. Самонастраивающаяся система связана:

    а) со структурной адаптацией;

    б) с параметрической адаптацией;

    в) с адаптацией целей управления;

    г) с адаптацией объекта управления.
    119. Динамическая система может находиться в следующих режимах:

    а) переходном;

    б) периодическом;

    в) каузальном;

    г) равновесном.
    120. Устойчивая система после снятия возмущения:

    а) возвращается к установившемуся состоянию;

    б) переходит к новому установившему состоянию;

    в) переходит к новому равновесному состоянию;

    г) возвращается к циклическому режиму.
    121. Для то чтобы гомеостатическая систем была устойчивой необходимо:

    а) степень неустойчивости каждого антагониста не должна превышать определенное критическое значение;

    б) стохастичность каждого антагониста не должна превышать определенное пороговое значение;

    в) несимметрия воздействий, прикладываемых к антагонистам, не должна превышать определенного критического предела несимметрии;

    г) несимметрия параметров антагонистов не должна превышать определенного критического предела несимметрии.