Окислительно-восстановительные реакции. По изменению степени окисления все химические реакции можно разделить на два типа. Электроотрицательность. Степень окисления и валентность химических элементов. Реакции окислительно — восстановительные Реакции проис

По изменению степени окисления все химические реакции можно разделить на два типа:

I.Реакции, протекающие без изменения степени окисления элементов, входящих в состав реагирующих веществ. Такие реакции относятся к реакциям ионного обмена.

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

II. Реакции, идущие с изменением степени окисления элементов,

входящих в состав реагирующих веществ. Такие реакции относятся к окислительно-восстановительным реакциям.

5NaNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5NaNO 3 +2MnSO 4 + K 2 SO 4 + 3H 2 O.

Степень окисления (окисленности) – характеристика состояния атомов элементов в составе молекулы. Она характеризует неравномерность распределения электронов между атомами элементов и соответствует заряду, который приобрел бы атом элемента, если бы все общие электронные пары его химических связей сместились в сторону более электроотрицательного элемента. В зависимости от относительной электроотрицательности элементов, образующих связь, электронная пара может быть смещена к одному из атомов или симметрично расположена относительно ядер атомов. Поэтому степень окисления элементов может иметь отрицательное, положительное или нулевое значение.

Элементы, атомы которых принимают электроны от других атомов, имеют отрицательную степень окисления. Элементы, атомы которых отдают свои электроны другим атомам, имеют положительную степень окисления. Нулевую степень окисления имеют атомы в молекулах простых веществ, а также, если вещество находится в атомном состоянии.

Степень окисления обозначается +1, +2.

Заряд иона 1+, 2+.

Степень окисления элемента в соединении определяется по правилам:

1.Степень окисления элемента в простых веществах равна нулю.

2.Некоторые элементы почти во всех своих соединениях проявляют постоянную степень окисления. К таким элементам относятся:

Hимеет степень окисления +1 (за исключением гидридов металлов).

Oимеет степень окисления –2 (за исключением фторидов).

3.Элементы I, II и III групп главных подгрупп Периодической системы элементов Д.И.Менделеева имеют постоянную степень окисления, равную номеру группы.

Элементы Na, Ba, Al: степень окисления +1, +2,+3 соответственно.

4.Для элементов, имеющих переменную степень окисления, существует понятие высшая и низшая степени окисления.

Высшая степень окисления элемента равна номеру группы Периодической системы элементов Д.И.Менделеева, в которой находится элемент.

Элементы N,Cl: высшая степень окисления +5,+7соответственно.

Низшая степень окисления элемента равна номеру группы Периодической системы элементов Д.И Менделеева, в которой находится элемент минус восемь.

Элементы N,Cl: низшая степень окисления -3,-1 соответственно.

5.В одноэлементных ионах степень окисления элемента равна заряду иона.

Fe 3+ - степень окисления равна +3; S 2- - степень окисления равна -2.

6.Сумма степеней окисления всех атомов элементов в молекуле равна нулю.

KNO 3 ; (+1) + X+ 3 · (-2) = 0; X= +5. Степень окисления азота равна +5.

7.Сумма степеней окисления всех атомов элементов в ионе равна заряду иона.

SO 4 2- ; X+ 4· (-2) = -2; X= +6. Степень окисления серы равна +6.

8.В соединениях, состоящих из двух элементов, элемент, который записан справа, всегда имеет низшую степень окисления.

Реакции, в которых изменяется степень окисления элементов, относятся к окислительно-восстановительным реакциям /ОВР/. Эти реакции состоят из процессов окисления и восстановления.

Окислением называется процесс отдачи электронов элементом, входящим в состав атома, молекулы или иона.

Al 0 – 3e = Al 3+

H 2 – 2e = 2H +

Fe 2+ - e = Fe 3+

2Cl - - 2e= Cl 2

При окислении степень окисления элемента повышается. Вещество (атом, молекула или ион), в состав которого входит элемент, отдающий электроны, называется восстановителем. Al, H 2 , Fe 2+ , Cl - - восстановители. Восстановитель окисляется.

Восстановлением называется процесс присоединения электронов элементом, входящим в состав атома, молекулы или иона.

Cl 2 + 2e = 2Cl -

Fe 3+ + e = Fe 2+

При восстановлении степень окисления элемента понижается. Вещество (атом, молекула или ион), в состав которого входит элемент, принимающий электроны, называется окислителем. S, Fe 3+ , Cl 2 – окислители. Окислитель восстанавливается.

Общее число электронов в системе при химической реакции не изменяется. Число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем.

Для составления уравнения окислительно-восстановительной реакции (ОВР) в растворах используют ионно-электронный метод (метод полуреакций).

ОВР могут протекать в кислой, нейтральной или щелочной средах. В уравнениях реакций учитывают возможное участие молекул воды (HOH) и содержащихся в растворе в зависимости от характера среды избытка ионов Н + или ОН - :

в кислой среде – НОН и ионы Н + ;

в нейтральной среде – только НОН;

в щелочной среде – НОН и ионы ОН - .

При составлении уравнений ОВР необходимо придерживаться определенной последовательности:

1.Написать схему реакции.

2.Определить элементы, которые изменили степень окисления.

3.Написать схему в кратком ионно-молекулярном виде: сильные электролиты в виде ионов, слабые электролиты в виде молекул.

4.Составить уравнения процессов окисления и восстановления (уравнения полуреакций). Для этого записать элементы, изменяющие степень окисления в виде реальных частиц (ионов, атомов, молекул) и уравнять число каждого элемента в левой и правой частях полуреакции.

Примечание:

Если исходное вещество содержит меньше атомов кислорода, чем продукты (Р РО 4 3-) , то недостаток кислорода поставляется средой.

Если исходное вещество содержит больше атомов кислорода, чем продукты (SO 4 2- SO 2) , то освобождающийся кислород связывается средой.

5.Уравнять левую и правую части уравнений по числу зарядов. Для этого прибавить или вычесть необходимое число электронов.

6.Подобрать множители для полуреакций окисления и восстановления так, чтобы число электронов при окислении было равно числу электронов при восстановлении.

7.Суммировать полуреакции окисления и восстановления с учетом найденных множителей.

8.Полученное ионно-молекулярное уравнение записать в молекулярной форме.

9.Провести проверку по кислороду.

Различают три типа окислительно-восстановительных реакций:

а) Межмолекулярные – реакции, в которых степень окисления изменяется у элементов, входящих в состав различных молекул.

2KMnO 4 + 5NaNO 2 + 3H 2 SO 4 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

б) Внутримолекулярные – реакции, в которых степень окисления изменяется у элементов, входящих в состав одной молекулы.

К окислительно-восстановительным реакциям относятся такие, которые сопровождающиеся перемещением электронов от одних частиц к другим. При рассмотрении закономерностей протекания окислительно-восстановительных реакций используется понятие степени окисления.

Степень окисления

Понятие степени окисления введено для характеристики состояния элементов в соединениях. Под степенью окисления понимается условный заряд атома в соединении, вычисленный исходя из предположения, что соединение состоит из ионов . Степень окисления обозначается арабской цифрой со знаком плюс при смещении электронов от данного атома к другому атому и цифрой со знаком минус при смещении электронов в обратном направлении. Цифру со знаком “+” или “-“ ставят над символом элемента. Степень окисления указывает состояние окисления атома и представляет собой всего лишь удобную форму для учета переноса электронов: ее не следует рассматривать ни как эффективный заряд атома в молекуле (например, в молекуле LiF эффективные заряды Li и F равны соответственно + 0,89 и -0,89, тогда как степени окисления +1 и -1), ни как валентность элемента (например, в соединениях CH 4 , CH 3 OH, HCOOH, CO 2 валентность углерода равна 4, а степени окисления соответственно равны -4, -2, +2, +4). Численные значения валентности и степени окисления могут совпадать по абсолютной величине лишь при образовании соединений с ионной структурой.

При определении степени окисления используют следующие правила:

Атомы элементов, находящихся в свободном состоянии или в виде молекул простых веществ, имеют степень окисления, равную нулю, например Fe, Cu, H 2 , N 2 и т.п.

Степень окисления элемента в виде одноатомного иона в соединении, имеющем ионное строение, равна заряду данного иона,

1 -1 +2 -2 +3 -1

например, NaCl , Cu S, AlF 3 .

Водород в большинстве соединений имеет степень окисления +1, за исключением гидридов металлов (NaH, LiH), в которых степень окисления водорода равна -1.

Наиболее распространенная степень окисления кислорода в соединениях -2 , за исключением пероксидов (Na 2 O 2 , Н 2 О 2), в которых степень окисления кислорода равна –1 и F 2 O, в котором степень окисления кислорода равна +2.

Для элементов с непостоянной степенью окисления ее значение можно рассчитать, зная формулу соединения и учитывая, что алгебраическая сумма степеней окисления всех элементов в нейтральной молекуле равна нулю. В сложном ионе эта сумма равна заряду иона. Например, степень окисления атома хлора в молекуле HClO 4 , вычисленная исходя из суммарного заряда молекулы = 0, где х – степень окисления атома хлора), равна +7. Степень окисления атома серы в ионе (SO 4) 2- [х + 4(-2) = -2] равна +6.

Окислительно-восстановительные свойства веществ

Любая окислительно-восстановительная реакция состоит из процессов окисления и восстановления. Окисление - это процесс отдачи электронов атомом, ионом или молекулой реагента. Вещества, которые отдают свои электроны в процессе реакции и при этом окисляются, называют восстановителями.

Восстановление – это процесс принятия электронов атомом, ионом или молекулой реагента.

Вещества, которые принимают электроны и при этом восстанавливаются, называют окислителями.

Реакции окисления-восстановления всегда протекают как единый процесс, называемый окислительно-восстановительной реакцией. Например, при взаимодействии металлического цинка с ионами меди восстановитель (Zn) отдает свои электроны окислителю – ионам меди (Cu 2+):

Zn + Cu 2+ Zn 2+ + Cu

Медь выделяется на поверхности цинка, а ионы цинка переходят в раствор.

Окислительно-восстановительные свойства элементов связаны со строением их атомов и определяются положением в периодической системе Д.И. Менделеева. Восстановительная способность элемента обусловлена слабой связью валентных электронов с ядром. Атомы металлов, содержащие на внешнем энергетическом уровне небольшое число электронов склонны к их отдаче, т.е. легко окисляются, играя роль восстановителей. Самые сильные восстановители – наиболее активные металлы.

Критерием окислительно-восстановительной активности элементов может служить величина их относительной электроотрицательности : чем она выше, тем сильнее выражена окислительная способность элемента, и чем ниже, тем ярче проявляется его восстановительная активность. Атомы неметаллов (например, F, O) обладают высоким значением сродства к электрону и относительной электроотрицательности, они легко принимают электроны, т.е. являются окислителями.

Окислительно-восстановительные свойства элемента зависят от степени его окисления. У одного и того же элемента различают низшую, высшую и промежуточные степени окисления.

В качестве примера рассмотрим серу S и ее соединения H 2 S, SO 2 и SO 3 . Связь между электронной структурой атома серы и его окислительно-восстановительными свойствами в этих соединениях наглядно представлена в таблице 1.

В молекуле H 2 S атом серы имеет устойчивую октетную конфигурацию внешнего энергетического уровня 3s 2 3p 6 и поэтому не может больше присоединять электроны, но может их отдавать.

Состояние атома, в котором он не может больше принимать электроны, называется низшей степенью окисления.

В низшей степени окисления атом теряет окислительную способность и может быть только восстановителем.

Таблица.1.

Формула вещества

Электронная формула

Окислительно-восстановительные свойства

1s 2 2s 2 2p 6 3s 2 3p 6

–2
; - 6
; - 8
восстановитель

1s 2 2s 2 2p 6 3s 2 3p 4

+ 2

окислитель

–4
;

- 6

восстановитель

1s 2 2s 2 2p 6 3s 2 3p o

+ 4
;

+ 6

окислитель

-2
восстановитель

1s 2 2s 2 2p 6 3s o 3p 0

+ 2
; + 6
;

+ 8

окислитель

В молекуле SO 3 все внешние электроны атома серы смещены к атомам кислорода. Следовательно, в этом случае атом серы может только принимать электроны, проявляя окислительные свойства.

Состояние атома, в котором он отдал все валентные электроны, называется высшей степенью окисления. Атом, находящийся в высшей степени окисления, может быть только окислителем.

В молекуле SO 2 и элементарной сере S атом серы находится в промежуточных степенях окисления , т.е., имея валентные электроны, атом может их отдавать, но, не имея завершенного р - подуровня, может и принимать электроны до его завершения.

Атом элемента, имеющий промежуточную степень окисления, может проявлять как окислительные, так и восстановительные свойства, что определяется его ролью в конкретной реакции.

Так, например роль сульфит - аниона SOв следующих реакциях различна:

5Na 2 SO 3 +2KMnO 4 + 3H 2 SO 4  2MnSO 4 + 5Na 2 SO 4 + K 2 SO 4 + 3H 2 O (1)

H 2 SO 3 + 2 H 2 S  3 S + 3 H 2 O (2)

В реакции (1) сульфит-анион SOв присутствии сильного окислителяKMnO 4 играет роль восстановителя; в реакции (2) сульфит-анион SO- окислитель, так как H 2 S может проявлять только восстановительные свойства.

Таким образом, среди сложных веществ восстановителями могут быть:

1. Простые вещества, атомы которых обладают низкими значениями энергии ионизации и электроотрицательности (в частности, металлы).

2. Сложные вещества, содержащие атомы в низших степенях окисления:

HCl ,H 2 S ,N H 3

Na 2 S O 3 , Fe Cl 2 , Sn (NO 3) 2 .

Окислителями могут быть:

1. Простые вещества, атомы которых обладают высокими значениями сродства к электрону и электроотрицательности - неметаллы.

2. Сложные вещества, содержащие атомы в высших степенях окисления: +7 +6 +7

KMn O 4 , K 2 Cr 2 O 7 , HClO 4 .

3. Сложные вещества, содержащие атомы в промежуточных степенях окисления:

Na 2 S O 3 , Mn O 2 , Mn SO 4 .

По этому признаку различают окислительно-восстановительные реакции и реакции, протекающие без изменения степеней окисления химических элементов.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:


Как вы помните, коэффициенты в сложных окислительно-восстановительных реакциях расставляют, используя метод электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.

1. Они восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:


Сущность всех приведенных выше примеров окислительно-восстановительных реакций была представлена с помощью хорошо известного вам метода электронного баланса. Он основан на сравнении степеней окисления атомов в реагентах и продуктах реакции и на балансировании числа электронов в процессах окисления и восстановления. Этот метод применяют для составления уравнений реакций, протекающих в любых фазах. Этим он универсален и удобен. Но в то же время он имеет серьезный недостаток - при выражении сущности окислительно-восстановительных реакций, протекающих в растворах, указываются частицы, которые реально не существуют.

В этом случае удобнее использовать другой метод - метод полуреакций. Он основан на составлении ионноэлектронных уравнений для процессов окисления и восстановления с учетом реально существующих частиц и последующем суммировании их в общее уравнение. В этом методе не используют понятие «степень окисления», а продукты определяются при выводе уравнения реакции.

Продемонстрируем этот метод на примере: составим уравнение окислительно-восстановительной реакции цинка с концентрированной азотной кислотой.

1. Записываем ионную схему процесса, которая включает только восстановитель и продукт его окисления, окислитель и продукт его восстановления:

2. Составляем ионно-электронное уравнение процесса окисления (это 1-я полуреакция):

3. Составляем ионно-электронное уравнение процесса восстановления (это 2-я полуреакция):

Обратите внимание: электронно-ионные уравнения составляются в соответствии с законом сохранения массы и заряда.

4. Записываем уравнения полуреакций так, чтобы число электронов между восстановителем и окислителем было сбалансированно:

5. Суммируем почленно уравнения полуреакций. Составляем общее ионное уравнение реакции:

Проверяем правильность составления уравнения реакции в ионном виде:

  • Соблюдение равенства по числу атомов элементов и по числу зарядов
    1. Число атомов элементов должно быть равно в левой и правой частях ионного уравнения реакции.
    2. Общий заряд частиц в левой и правой частях ионного уравнения должен быть одинаков.

6. Записываем уравнение в молекулярной форме. Для этого добавляем к ионам, входящим в ионное уравнение, необходимое число ионов противоположного заряда.

Окислительно-восстановительные реакции (ОВР) – реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, в результате переноса электронов от одного атома к другому.

Степень окисления формальный заряд атома в молекуле,вычисленный исходя из предположения, что молекула состоит только от ионов.

Наиболее электроотрицательные элементы в соединении имеют отрицательные степени окисления, а атомы элементов с меньшей электроотрицательностью − положительные.

Степень окисления − формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.

Например: N 2 H 4 (гидразин)

степень окисления азота – -2; валентность азота – 3.

Расчет степени окисления

Для вычисления степени окисления элемента следует учитывать следующие положения:

1. Степени окисления атомов в простых веществах равны нулю (Na 0 ; H 2 0).

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

3. Постоянную степень окисления имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), водорода (+1) (кроме гидридов NaH, CaH 2 и др., где степень окисления водорода -1), кислорода (-2) (кроме F 2 -1 O +2 и пероксидов, содержащих группу –O–O–, в которой степень окисления кислорода -1).

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

V 2 +5 O 5 -2 ; Na 2 +1 B 4 +3 O 7 -2 ; K +1 Cl +7 O 4 -2 ; N -3 H 3 +1 ; K 2 +1 H +1 P +5 O 4 -2 ; Na 2 +1 Cr 2 +6 O 7 -2

Реакции с изменением, и без изменения степени окисления

Существует два типа химических реакций:

A Реакции, в которых не изменяется степень окисления элементов:

Реакции присоединения: SO 2 + Na 2 O Na 2 SO 3

Реакции разложения: Cu(OH) 2  CuO + H 2 O

Реакции обмена: AgNO 3 + KCl AgCl +KNO 3

NaOH + HNO 3 NaNO 3 + H 2 O

B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:

2Mg 0 + O 2 0 2Mg +2 O -2

2KCl +5 O 3 -2 – t  2KCl -1 + 3O 2 0 ­

2KI -1 + Cl 2 0 2KCl -1 + I 2 0

Mn +4 O 2 + 4HCl -1 Mn +2 Cl 2 + Cl 2 0 ­ + 2H 2 O

Такие реакции называются окислительно-восстановительными.

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление . При окислении степень окисления повышается:

H 2 0 − 2ē 2H +

S -2 − 2ē S 0

Al 0 − 3ē Al +3

Fe +2 − ē Fe +3

2Br - − 2ē Br 2 0

Процесс присоединения электронов -− восстановление . При восстановлении степень окисления понижается.

Mn +4 + 2ē Mn +2

Сr +6 +3ē Cr +3

Cl 2 0 +2ē 2Cl -

O 2 0 + 4ē 2O -2

Атомы или ионы, которые в данной реакции присоединяют электроны, являются окислителями, а которые отдают электроны - восстановителями.

Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами. Минимальная степень окисления атомов металлов равна 0, для неметаллов - (n–8) (где n- номер группы в периодической системе). Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями и восстановителями, в зависимости от партнера, с которым взаимодействуют и от условий реакции.