Методы построения научной теории: аксиоматический, генетический, гипотетико-дедуктивный, математический. Особенности теоретического знания. Аксиоматический метод построения теорий Развитие математического знания на основе аксиом

Аксиоматический метод впервые был успешно применен Евклидом для построения элементарной геометрии. С того времени этот метод претерпел значительную эволюцию, нашел многочисленные приложения не только в математике, но и во многих разделах точного естествознания (механика, оптика, электродинамика, теория относительности, космология и др.).

Развитие и совершенствование аксиоматического метода происходило по двум основным линиям: во-первых, обобщения самого метода и, во-вторых, разработки логической техники, используемой в процессе вывода теорем из аксиом. Чтобы яснее представить характер происшедших изменений, обратимся к первоначальной аксиоматике Евклида. Как известно, исходные понятия и аксиомы геометрии у него интерпретируются одним-единственным образом. Под точкой, прямой и плоскостью как основными понятиями геометрии подразумеваются идеализированные пространственные объекты, а сама геометрия рассматривается как учение о свойствах физического пространства. Постепенно выяснилось, что аксиомы Евклида оказываются верными не только для описания свойств геометрических, но и других математических и даже физических объектов. Так, если под точкой подразумевать тройку действительных чисел, под прямой, плоскостью - соответствующие линейные уравнения, то свойства всех этих негеометрических объектов будут удовлетворять геометрическим аксиомам Евклида. Еще более интересной является интерпретация этих аксиом с помощью физических объектов, например состояний механической и физико-химической системы или многообразия цветовых ощущений. Все это свидетельствует о том, что аксиомы геометрии можно интерпретировать с помощью объектов самой различной природы.

Такой абстрактный подход к аксиоматике в значительной мере был подготовлен открытием неевклидовых геометрий Н. И. Лобачевским, Я. Бойаи, К. Ф. Гауссом и Б. Риманом. Наиболее последовательное выражение новый взгляд на аксиомы как абстрактные формы, допускающие множество различных интерпретаций, нашел в известной работе Д. Гильберта «Основания геометрии» (1899г.). «Мы мыслим, - писал он в этой книге, - три различные системы вещей: вещи первой системы мы называем точками и обозначаем А, В, С,...; вещи второй системы мы называем прямыми и обозначаем а, b, с,...; вещи третьей системы мы называем плоскостями и обозначаем а, В, у,...». Отсюда видно, что под «точкой», «прямой» и «плоскостью» можно подразумевать любые системы объектов. Важно только, чтобы их свойства описывались соответствующими аксиомами. Дальнейший шаг на пути отвлечения от содержания аксиом связан с их символическим представлением в виде формул, а также точным заданием тех правил вывода, которые описывают, как из одних формул (аксиом) получаются другие формулы (теоремы). В результате этого содержательные рассуждения с понятиями на такой стадии исследования превращаются в некоторые операции с формулами по заранее предписанным правилам. Иначе говоря, содержательное мышление отображается здесь в исчислении. Аксиоматические системы подобного рода часто называют формализованными синтаксическими системами, или исчислениями.

Все три рассмотренных типа аксиоматизации находят применение в современной науке. К формализованным аксиоматическим системам прибегают главным образом при исследовании логических оснований той или иной науки. Наибольший размах такие исследования получили в математике в связи с обнаружением парадоксов теории множеств. Значительную роль формальные системы играют при создании специальных научных языков, с помощью которых удается максимальным образом устранить неточности обычного, естественного языка.

Некоторые ученые считают этот момент чуть ли не главным в процессе применения логико-математических методов в конкретных науках. Так, английский ученый И. Вуджер, являющийся одним из пионеров использования аксиоматического метода в биологии, полагает, что применение этого метода в биологии и других отраслях естествознания состоит в создании научно совершенного языка, в котором возможно исчисление. Основой для построения такого языка служит аксиоматический метод, выраженный в виде формализованной системы, или исчисления. В качестве алфавита формализованного языка служат исходные символы двух типов: логические и индивидуальные.

Логические символы отображают логические связи и отношения, общие для многих или большинства теорий. Индивидуальные символы обозначают объекты исследуемой теории, например математической, физической или биологической. Подобно тому как определенная последовательность букв алфавита образует слово, так и конечная совокупность упорядоченных символов образует формулы и выражения формализованного языка. Для отличия осмысленных выражений языка вводят понятие правильно построенной формулы. Чтобы закончить процесс построения искусственного языка, достаточно четко описать правила вывода или преобразования одних формул в другие и выделить некоторые правильно построенные формулы в качестве аксиом. Таким образом, построение формализованного языка происходит так же, как и построение содержательной аксиоматической системы. Поскольку содержательные рассуждения с формулами в первом случае недопустимы, то логический вывод следствий сводится здесь к выполнению точно предписанных операций обращения с символами и их комбинациями.

Главная цель использования формализованных языков в науке - критический анализ рассуждений, с помощью которых получается новое знание в науке. Поскольку в формализованных языках отображаются некоторые аспекты содержательных рассуждений, то они могут быть использованы также для оценки возможностей автоматизации интеллектуальной деятельности.

Абстрактные аксиоматические системы получили наибольшее применение в современной математике, для которой характерен чрезвычайно общий подход к предмету исследования. Вместо того чтобы говорить о конкретных числах, функциях, линиях, поверхностях, векторах и тому подобных объектах, современный математик рассматривает различные множества абстрактных объектов, свойства которых точно формулируются с помощью аксиом. Такие совокупности, или множества, вместе с описывающими их аксиомами теперь часто называют абстрактными математическими структурами.

Какие преимущества аксиоматический метод даст математике? Во-первых, он значительно расширяет границы применения математических методов и зачастую облегчает процесс исследования. При изучении конкретных явлений и процессов в той или иной области ученый может воспользоваться абстрактными аксиоматическими системами как готовыми орудиями анализа. Убедившись в том, что рассматриваемые явления удовлетворяют аксиомам некоторой математической теории, исследователь может без дополнительной трудоемкой работы сразу же воспользоваться всеми теоремами, которые следуют из аксиом. Аксиоматический подход избавляет специалиста конкретной науки от выполнения довольно сложного и трудного для него математического исследования.

Для математика этот метод дает возможность глубже понять объект исследований, выделить в нем главные направления, понять единство и связь разных методов и теорий. Единство, которое достигается с помощью аксиоматического метода, по образному выражению Н. Бурбаки, не есть единство, «которое дает скелет, лишенный жизни. Это питательный сок организма в полном развитии, податливый и плодотворный инструмент исследования...». Благодаря аксиоматическому методу, особенно в его формализованном виде, становится возможным полностью раскрыть логическую структуру различных теорий. В наиболее совершенном виде это относится к математическим теориям. В естественнонаучном знании приходится ограничиваться аксиоматизацией основного ядра теорий. Далее, применение аксиоматического метода дает возможность лучше контролировать ход наших рассуждений, добиваясь необходимой логической строгости. Однако главная ценность аксиоматизации, особенно в математике, состоит в том, что она выступает как метод исследования новых закономерностей, установления связей между понятиями и теориями, которые раньше казались обособленными друг от друга.

Ограниченное применение аксиоматического метода в естествознании объясняется прежде всего тем, что его теории постоянно должны контролироваться опытом.

В силу этого естественнонаучная теория никогда не стремится к полной законченности и замкнутости. Между тем в математике предпочитают иметь дело с системами аксиом, которые удовлетворяют требованию полноты. Но как показал К. Гёдель, всякая непротиворечивая система аксиом нетривиального характера не может быть полной.

Требование непротиворечивости системы аксиом гораздо существеннее требования их полноты. Если система аксиом будет противоречивой, она не будет представлять никакой ценности для познания. Ограничиваясь неполными системами, можно аксиоматизировать лишь основное содержание естественнонаучных теорий, оставляя возможность для дальнейшего развития и уточнения теории экспериментом. Даже такая ограниченная цель в ряде случаев оказывается весьма полезной, например для обнаружения некоторых неявных предпосылок и допущений теории, контроля полученных результатов, их систематизации и т.п.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития.

Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории. Таким образом, аксиоматический метод в большей мере, чем гипотетико-дедуктивный, приспособлен для исследования готового, достигнутого знания.

Анализ возникновения знания, процесса его формирования требует обращения к материалистической диалектике, как наиболее глубокому и всестороннему учению о развитии.

Аксиоматический метод построения научной теории

Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике.

Аксиоматический метод построения научной теории заключается в следующем: выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них.

Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными.

Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к недоказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения.

Выделив основные понятия и сформулировав аксимы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии.

Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах.

После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту.

Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались "Элементы".

Потом, в III в. до н.э., в Александрии появилась книга Евклида с тем же названием, в русском переводе "Начала". От латинского названия "Начал" произошёл термин "элементарная геометрия". Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по "Началам" Евклида. В "Началах" имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют "Начала" предшественников Евклида.

"Начала" Евклида состоят из 13 книг. 1 - 6 книги посвящены планиметрии, 7 - 10 книги - об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии.

"Начала" начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом - "общие понятия", остальные называются "постулатами". Первые два постулата определяют действия с помощью идеальной линейки, третий - с помощью идеального циркуля. Четвёртый, "все прямые углы равны между собой", является излишним, так как его можно вывести из остальных аксиом. Последний, пятый

постулат гласил: "Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых".

Пять "общих понятий" Евклида являются принципами измерения длин, углов, площадей, объёмов: "равные одному и тому же равны между собой", "если к равным прибавить равные, суммы равны между собой", "если от равных отнять равные, остатки равны между собой", "совмещающиеся друг с другом равны между собой", "целое больше части".

Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам: за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему: "Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую".

Критика разрыва между геометрией и арифметикой привела к расширению понятия числа до действительного числа. Споры о пятом постулате привели к тому, что в начале XIX века Н. И. Лобачевский, Я. Бойяи и К. Ф. Гаусс построили новую геометрию, в которой выполнялись все аксиомы геометрии Евклида, за исключением пятого постулата. Он был заменён противоположным утверждением: "В плоскости через точку вне прямой можно провести более одной прямой, не пересекающей данную". Эта геометрия была столь же непротиворечивой, как и геометрия Евклида.

Модель планиметрии Лобачевского на евклидовой плоскости была построена французским математиком Анри Пуанкаре в 1882 г.

На евклидовой плоскости проведём горизонтальную прямую (см. рисунок 1). Эта прямая называется абсолютом (x ). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD ). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F ). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского.

Все аксиомы планиметрии Лобачевского непротиворечивы. Определение прямой следующее: "Неевклидова прямая - это полуокружность с концами на абсолюте или луч с началом на абсолюте и перпендикулярный абсолюту". Таким образом, утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой a и точки A , не лежащей на этой прямой, но и для любой прямой a и любой не лежащей на ней точки A (см. рисунок 2).

За геометрией Лобачевского возникли и другие непротиворечивые геометрии: от евклидовой отделилась проективная геометрия, сложилась многомерная евклидова геометрия, возникла риманова геометрия (общая теория пространств с произвольным законом измерения длин) и др. Из науки о фигурах в одном трёхмерном евклидовом пространстве геометрия за 40 - 50 лет превратилась в совокупность разнообразных теорий, лишь в чём-то сходных со своей прародительницей - геометрией Евклида.

Аксиоматический метод является способом построения научных теорий, которые уже установлены. В основе лежат аргументы, факты, утверждения, не требующие доказательств или опровержения. По сути, это вариант знания представлен в виде дедуктивной структуры, в которую изначально входит логическое обоснование содержания из основоположений - аксиом.

Этот метод не может быть открытием, а является только классифицирующим понятием. Он больше подойдет для преподавания. В основе присутствуют исходные положения, а остальные сведения вытекают как логическое следствие. Где находится аксиоматический метод построения теории? Он лежит в структуре большинства современных и устоявшихся наук.

Становление и развитие понятия аксиоматического метода, определение слова

Прежде всего, это понятие возникло в Древней Греции благодаря Евклиду. Он стал основоположником аксиоматического метода в геометрии. Сегодня он распространен во всех науках, но более всего в математике. Этот способ формируется на основе устоявшихся утверждений, а последующие теории выводятся путем логического построения.

Это объясняется следующим образом: существуют слова и понятия, которые определяются другими понятиями. В результате исследователи пришли к выводу, что существуют элементарные выводы, обоснованные и являющиеся постоянными - основными, то есть аксиомами. К примеру, доказывая теорему, обычно опираются на факты, которые уже устоявшиеся и не требуют опровержения.

Однако до этого их требовалось обосновать. В процессе получается, что неаргументированное утверждение принимается за аксиому. Опираясь на набор постоянных понятий, доказывают другие теоремы. Они составляют основу планиметрии и являются логическим строением геометрии. Устоявшиеся аксиомы в этой науке определяются как объекты любой природы. Они, в свою очередь, обладают свойствами, которые указаны в постоянных понятиях.

Дальнейшие исследования аксиом

Способ рассматривался как идеальный вплоть до девятнадцатого столетия. Логические средства поиска основных понятий еще в те времена не изучались, но в системе Евклида можно наблюдать структуру получения содержательных последствий из аксиоматического метода. Исследования ученого показали идею о том, как получить полную систему геометрических знаний на основе чисто дедуктивного пути. Им предлагалось сравнительно небольшое количество утвержденных аксиом, которые истинны наглядно.

Заслуги древнегреческих умов

Евклид доказал множество понятий, причем некоторые из них были обоснованы. Однако большинство приписывает эти заслуги Пифагору, Демокриту и Гиппократу. Последний составил полный курс геометрии. Правда, позже в Александрии вышел сборник "Начало", автором которого являлся Евклид. Затем, он был переименован в "Элементарную геометрию". Спустя некоторое время его начали критиковать на основе некоторых причин:

  • все величины строились только с помощью линейки и циркуля;
  • геометрия и арифметика были разъединены и доказывались с учетом обоснованных чисел и понятий;
  • аксиомы, некоторые из них, в частности, пятый постулат, предлагали вычеркнуть из общего списка.

В результате в XIX веке возникает неевклидовая геометрия, в которой отсутствует объективно истинный постулат. Это действие дало толчок для дальнейшего развития геометрической системы. Таким образом, к дедуктивным способам построения пришли математические исследователи.

Развитие математического знания на основе аксиом

Когда начала развиваться новая система геометрии, изменился и аксиоматический метод. В математике стали чаще обращаться к чисто дедуктивному построению теории. В результате в современной числовой логике возникла целая система доказательств, которая является главным разделом всей науки. В математической структуре стали понимать необходимость обоснования.

Так, уже к концу столетия сформировались четкие задачи и построение сложных понятий, которые из сложной теоремы сводились к простейшему логическому утверждению. Таким образом, неевклидовая геометрия стимулировала прочную основу для дальнейшего существования аксиоматического метода, а также для решения проблем общего характера математических конструкций:

  • непротиворечивости;
  • полноты;
  • независимости.

В процессе появился и успешно получил развитие способ интерпретации. Этот метод описывается так: для каждого выходного понятия в теории поставлен математический объект, совокупность которых называется полем. Высказывание об указанных элементах может быть ложным или истинным. В результате утверждения получают названия в зависимости от выводов.

Особенности теории интерпретации

Как правило, поле и свойства также подвергаются рассмотрению в математической системе, и она, в свою очередь, может стать аксиоматической. Интерпретация доказывает утверждения, в которых имеется относительная непротиворечивость. Дополнительным вариантом выступает ряд фактов, при которых теория становится противоречивой.

По сути, условие в ряде случаев выполняется. В результате получается, что, если в высказываниях одного из утверждений присутствуют два ложных или истинных понятия, то оно считается отрицательным или положительным. Таким методом была доказана непротиворечивость геометрии Евклида. При интерпретационном методе можно решить вопрос о независимости систем аксиом. Если нужно опровергнуть какую-либо теорию, то достаточно доказать, что одно из понятий не выводится из другого и ошибочно.

Однако наряду с успешными утверждениями, способ имеет и слабые стороны. Непротиворечивость и независимость систем аксиом решаются как вопросы, которые получают результаты, носящие относительный характер. Единственное важное достижение интерпретации - обнаружение роли арифметики как структуры, в которой вопрос о непротиворечивости сводится к ряду иных наук.

Современное развитие аксиоматической математики

Аксиоматический метод стал развиваться в работе Гилберта. В его школе было уточнено само понятие теории и формальной системы. В результате возникла общая система, а математические объекты стали точными. Кроме того, появилась возможность решить вопросы обоснования. Таким образом, формальная система строится точным классом, в котором находятся подсистемы формул и теорем.

Чтобы построить эту структуру, нужно только руководствоваться техническими удобствами, потому что они не имеют никакой смысловой нагрузки. Они могут быть вписаны знаками, символами. То есть, по сути, сама система строится таким образом, чтобы формальную теорию можно было применять адекватно и в полной мере.

В результате выливается конкретная математическая цель или задача в теорию на основе фактического содержания или дедуктивного умозаключения. Язык числовой науки переводят на формальную систему, в процессе любое конкретное и осмысленное выражение определяется формулой.

Метод формализации

При естественном положении вещей подобный способ сможет решать такие глобальные вопросы, как непротиворечивость, а также строить положительную суть математических теорий по выведенным формулам. Причем в основном все это будет решать формальная система на основе доказанных утверждений. Математические теории постоянно осложнялись обоснованиями, и Гилберт предложил исследовать эту структуру при помощи финитных методов. Но это программа провалилась. Результаты Геделя уже в двадцатом столетии привели к следующим выводам:

  • естественная непротиворечивость невозможна за счет того, что формализованная арифметика или другая подобная наука из этой системы будет неполной;
  • появились неразрешимые формулы;
  • утверждения недоказуемы.

Истинные суждения и разумное финитное доведение считаются формализуемыми. С учетом этого аксиоматический метод имеет определенные и четкие границы и возможности в рамках этой теории.

Результаты развития аксиом в трудах математиков

Несмотря на то что некоторые суждения были опровергнуты и не получили должного развития, способ постоянных понятий играет значительную роль в формировании основ математики. Кроме этого, интерпретация и аксиоматический метод в науке выявили фундаментальные результаты непротиворечивости, независимости утверждений выбора и гипотез во множественной теории.

В решении вопроса непротиворечивости главное применить не только устоявшиеся понятия. Их нужно также дополнить идеями, концепциями и средствами финитного доведения. В данном случае рассматриваются различные взгляды, способы, теории, которые должны учитывать логический смысл и обоснование.

Непротиворечивость формальной системы указывает на подобное доведение арифметики, которая опирается на индукцию, счет, трансфинитное число. В научной области аксиоматизация является важнейшим инструментом, имеющим неопровержимые концепции и утверждения, берущиеся за основу.

Сущность исходных утверждений и их роль в теориях

Оценка аксиоматического метода указывает на то, что в его сущности лежит некая структура. Эту систему строят с выявления основополагающей концепции и фундаментальных утверждений, которые являются неопределяемыми. То же происходит и с теоремами, считающимися исходными и принимающимися без доказательств. В естественных науках за подобные утверждения выступают правила, допущения, законы.

Затем происходит процесс фиксации установленных баз для рассуждений. Как правило, сразу указывается, что из одного положения выводится другое, а в процессе выходят остальные, которые, в сущности, совпадают с дедуктивным методом.

Особенности системы в современности

В составе аксиоматической системы находятся:

  • логические выводы;
  • термины и определения;
  • частично неправильные утверждения и понятия.

В современной науке этот метод утратил абстрактность. В Евклидовой геометрической аксиоматизации в основе лежали интуитивные и истинные положения. И интерпретировалась теория единственным, естественным способом. Сегодня аксиома - это положение, которое само по себе очевидно, а соглашение, причем любое, может выступать как начальное, не требующее обоснования понятие. В результате исходные значения могут быть далекими от наглядности. Этот метод требует творческого подхода, знания взаимосвязей и исходной теории.

Основные принципы выведения заключений

Дедуктивно аксиоматический метод - это научное познание, строящееся по определенной схеме, в основе которой лежат правильно осознанные гипотезы, выводящие утверждения об Подобное умозаключение строится на основе логических структур, путем жесткого выведения. Аксиомы - изначально неопровержимые утверждения, не требующие доказательств.

При дедукции к исходным понятиям применяются определенные требования: непротиворечивости, полноты, независимости. Как показывает практика, первое условие основано на формально-логическом знании. То есть в теории не должны присутствовать значения истинности и ложности, ибо она уже не будет иметь значения и ценности.

Если такое условие не соблюдается, то она считается несовместной и в ней теряется какой-либо смысл, ибо теряется смысловая нагрузка между истиной и ложью. Дедуктивно аксиоматический метод является способом построения и обоснования научного знания.

Практическое применение метода

Аксиоматический метод построения научного знания имеет практическое применение. По сути, этот способ влияет и оказывает глобальное значение на математику, хотя это знание уже достигло своей вершины. Примеры аксиоматического метода следующие:

  • аффинные плоскости имеют три утверждения и определение;
  • теория эквивалентности обладает тремя доказательствами;
  • бинарные отношения подразделяются на систему определений, понятий и дополнительных упражнений.

Если нужно сформулировать исходное значение, то необходимо знать природу множеств и элементов. В сущности, аксиоматический метод лег в основу различных областей науки.

Данный метод служит для построения теорий математики и точного естествознания. Преимущества этого метода были осознаны еще в третьем веке Евклидом при построении системы знаний по элементарной геометрии. При аксиоматическом построении теории точно разграничивают минимальное число исходных понятий и утверждений от остальных. Под аксиоматической теорией понимают научную систему, все положения которой выводятся чисто логически из некоторого множества положений, принимаемых в данной системе без доказательства и называемых аксиомами, и все понятия сводятся к некоторому фиксированному классу понятий, называемых неопределяемыми. Теория определена, если указана система аксиом и совокупность применяемых логических средств - правил вывода. Производные понятия в аксиоматической теории есть сокращения для комбинации основных. Допустимость комбинаций определяется аксиомами и правилами вывода. Другими словами, определения в аксиоматических теориях носят номинальный характер.

Аксиома должна быть логически сильнее других утверждений, которые выводятся из нее как следствия. Система аксиом теории потенциально содержит все следствия, или теоремы, которые с их помощью можно доказать. Таким образом, в ней сконцентрировано все существенное содержание теории. В зависимости от характера аксиом и средств логического вывода различают:

  • 1) формализованные аксиоматические системы, в которых аксиомы представляют собой исходные формулы, а теоремы получаются из них по определенным и точно перечисленным правилам преобразования, в результате чего построение системы превращается в своеобразную манипуляцию с формулами. Обращение к таким системам необходимо, чтобы максимально точно представить исходные посылки теории и логические средства вывода. аксиомами. Безуспешность попыток Лобачевского доказать аксиому о параллельных Евклида привела его к убеждению, что возможна другая геометрия. Если бы в то время существовало учение об аксиоматике и математическая логика, то ошибочных доказательств можно было бы легко избежать;
  • 2) полуформализованные или абстрактные аксиоматические системы, в которых средства логического вывода не рассматриваются, а предполагаются известными, а сами аксиомы хотя и допускают множество интерпретаций, но не выступают как формулы. С такими системами обычно имеют дело в математике;
  • 3) содержательные аксиоматические системы предполагают единственную интерпретацию, а средства логического вывода - известными; используются для систематизации научного знания в точном естествознании и других развитых эмпирических науках.

Существенное отличие математических аксиом от эмпирических заключается также в том, что они обладают относительной стабильностью, в то время как в эмпирических теориях их содержание меняется с обнаружением новых важных результатов опытного исследования. Именно с ними постоянно приходится считаться при разработке теорий, поэтому аксиоматические системы в таких науках никогда не могут быть ни полными, ни замкнутыми для вывода.

Аксиоматический метод впервые был успешно применен Евклидом для построения элементарной геометрии. С того времени этот метод претерпел значительную эволюцию, нашел многочисленные приложения не только в математике, но и во многих разделах точного естествознания (механика, оптика, электродинамика, теория относительности, космология и др.).

Развитие и совершенствование аксиоматического метода происходило по двум основным линиям: во-первых, обобщения самого метода и, во-вторых, разработки логической техники, используемой в процессе вывода теорем из аксиом. Чтобы яснее представить характер происшедших изменений, обратимся к первоначальной аксиоматике Евклида. Как известно, исходные понятия и аксиомы геометрии у него интерпретируются одним-единственным образом. Под точкой, прямой и плоскостью как основными понятиями геометрии подразумеваются идеализированные пространственные объекты, а сама геометрия рассматривается как учение о свойствах физического пространства. Постепенно выяснилось, что аксиомы Евклида оказываются верными не только для описания свойств геометрических, но и других математических и даже физических объектов. Так, если под точкой подразумевать тройку действительных чисел, под прямой, плоскостью - соответствующие линейные уравнения, то свойства всех этих негеометрических объектов будут удовлетворять геометрическим аксиомам Евклида. Еще более интересной является интерпретация этих аксиом с помощью физических объектов, например состояний механической и физико-химической системы или многообразия цветовых ощущений. Все это свидетельствует о том, что аксиомы геометрии можно интерпретировать с помощью объектов самой различной природы.

Такой абстрактный подход к аксиоматике в значительной мере был подготовлен открытием неевклидовых геометрий Н. И. Лобачевским, Я. Бойаи, К. Ф. Гауссом и Б. Риманом. Наиболее последовательное выражение новый взгляд на аксиомы как абстрактные формы, допускающие множество различных интерпретаций, нашел в известной работе Д. Гильберта «Основания геометрии» (1899г.). «Мы мыслим, - писал он в этой книге, - три различные системы вещей: вещи первой системы мы называем точками и обозначаем А, В, С,...; вещи второй системы мы называем прямыми и обозначаем а, b, с,...; вещи третьей системы мы называем плоскостями и обозначаем а, В, у,...». Отсюда видно, что под «точкой», «прямой» и «плоскостью» можно подразумевать любые системы объектов. Важно только, чтобы их свойства описывались соответствующими аксиомами. Дальнейший шаг на пути отвлечения от содержания аксиом связан с их символическим представлением в виде формул, а также точным заданием тех правил вывода, которые описывают, как из одних формул (аксиом) получаются другие формулы (теоремы). В результате этого содержательные рассуждения с понятиями на такой стадии исследования превращаются в некоторые операции с формулами по заранее предписанным правилам. Иначе говоря, содержательное мышление отображается здесь в исчислении. Аксиоматические системы подобного рода часто называют формализованными синтаксическими системами, или исчислениями.

Все три рассмотренных типа аксиоматизации находят применение в современной науке. К формализованным аксиоматическим системам прибегают главным образом при исследовании логических оснований той или иной науки. Наибольший размах такие исследования получили в математике в связи с обнаружением парадоксов теории множеств. Значительную роль формальные системы играют при создании специальных научных языков, с помощью которых удается максимальным образом устранить неточности обычного, естественного языка.

Некоторые ученые считают этот момент чуть ли не главным в процессе применения логико-математических методов в конкретных науках. Так, английский ученый И. Вуджер, являющийся одним из пионеров использования аксиоматического метода в биологии, полагает, что применение этого метода в биологии и других отраслях естествознания состоит в создании научно совершенного языка, в котором возможно исчисление. Основой для построения такого языка служит аксиоматический метод, выраженный в виде формализованной системы, или исчисления. В качестве алфавита формализованного языка служат исходные символы двух типов: логические и индивидуальные.

Логические символы отображают логические связи и отношения, общие для многих или большинства теорий. Индивидуальные символы обозначают объекты исследуемой теории, например математической, физической или биологической. Подобно тому как определенная последовательность букв алфавита образует слово, так и конечная совокупность упорядоченных символов образует формулы и выражения формализованного языка. Для отличия осмысленных выражений языка вводят понятие правильно построенной формулы. Чтобы закончить процесс построения искусственного языка, достаточно четко описать правила вывода или преобразования одних формул в другие и выделить некоторые правильно построенные формулы в качестве аксиом. Таким образом, построение формализованного языка происходит так же, как и построение содержательной аксиоматической системы. Поскольку содержательные рассуждения с формулами в первом случае недопустимы, то логический вывод следствий сводится здесь к выполнению точно предписанных операций обращения с символами и их комбинациями.

Главная цель использования формализованных языков в науке - критический анализ рассуждений, с помощью которых получается новое знание в науке. Поскольку в формализованных языках отображаются некоторые аспекты содержательных рассуждений, то они могут быть использованы также для оценки возможностей автоматизации интеллектуальной деятельности.

Абстрактные аксиоматические системы получили наибольшее применение в современной математике, для которой характерен чрезвычайно общий подход к предмету исследования. Вместо того чтобы говорить о конкретных числах, функциях, линиях, поверхностях, векторах и тому подобных объектах, современный математик рассматривает различные множества абстрактных объектов, свойства которых точно формулируются с помощью аксиом. Такие совокупности, или множества, вместе с описывающими их аксиомами теперь часто называют абстрактными математическими структурами.

Какие преимущества аксиоматический метод даст математике? Во-первых, он значительно расширяет границы применения математических методов и зачастую облегчает процесс исследования. При изучении конкретных явлений и процессов в той или иной области ученый может воспользоваться абстрактными аксиоматическими системами как готовыми орудиями анализа. Убедившись в том, что рассматриваемые явления удовлетворяют аксиомам некоторой математической теории, исследователь может без дополнительной трудоемкой работы сразу же воспользоваться всеми теоремами, которые следуют из аксиом. Аксиоматический подход избавляет специалиста конкретной науки от выполнения довольно сложного и трудного для него математического исследования.

Для математика этот метод дает возможность глубже понять объект исследований, выделить в нем главные направления, понять единство и связь разных методов и теорий. Единство, которое достигается с помощью аксиоматического метода, по образному выражению Н. Бурбаки, не есть единство, «которое дает скелет, лишенный жизни. Это питательный сок организма в полном развитии, податливый и плодотворный инструмент исследования...». Благодаря аксиоматическому методу, особенно в его формализованном виде, становится возможным полностью раскрыть логическую структуру различных теорий. В наиболее совершенном виде это относится к математическим теориям. В естественнонаучном знании приходится ограничиваться аксиоматизацией основного ядра теорий. Далее, применение аксиоматического метода дает возможность лучше контролировать ход наших рассуждений, добиваясь необходимой логической строгости. Однако главная ценность аксиоматизации, особенно в математике, состоит в том, что она выступает как метод исследования новых закономерностей, установления связей между понятиями и теориями, которые раньше казались обособленными друг от друга.

Ограниченное применение аксиоматического метода в естествознании объясняется прежде всего тем, что его теории постоянно должны контролироваться опытом.

В силу этого естественнонаучная теория никогда не стремится к полной законченности и замкнутости. Между тем в математике предпочитают иметь дело с системами аксиом, которые удовлетворяют требованию полноты. Но как показал К. Гёдель, всякая непротиворечивая система аксиом нетривиального характера не может быть полной.

Требование непротиворечивости системы аксиом гораздо существеннее требования их полноты. Если система аксиом будет противоречивой, она не будет представлять никакой ценности для познания. Ограничиваясь неполными системами, можно аксиоматизировать лишь основное содержание естественнонаучных теорий, оставляя возможность для дальнейшего развития и уточнения теории экспериментом. Даже такая ограниченная цель в ряде случаев оказывается весьма полезной, например для обнаружения некоторых неявных предпосылок и допущений теории, контроля полученных результатов, их систематизации и т.п.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития.

Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории. Таким образом, аксиоматический метод в большей мере, чем гипотетико-дедуктивный, приспособлен для исследования готового, достигнутого знания.

Анализ возникновения знания, процесса его формирования требует обращения к материалистической диалектике, как наиболее глубокому и всестороннему учению о развитии.